A Comprehensive Study on Bakelite Valves in Diaphragm Gas Meters and Improvement of their Physical and Mechanical Properties by Electron Beam Irradiation

Document Type : Research Paper

Authors

1 Department of Polymer Engineering, Shi.C., Islamic Azad University, Shiraz, Iran.

2 Department of Polymer Engineering, Shi.C., Islamic Azad University, Shiraz, Iran.\Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shi.C., Islamic Azad University, Shiraz, Iran.

3 Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shi.C., Islamic Azad University, Shiraz, Iran.\Department of Chemical Engineering, Shi.C., Islamic Azad University, Shiraz, Iran.

4 Fars Province Gas Company (FPGC), Shiraz, Fars, Iran

10.22078/jpst.2025.5697.1976

Abstract

The present study investigates the effects of electron beam irradiation on the physical and mechanical properties of Bakelite valves used in diaphragm gas meters. The irradiation is performed under vacuum at ambient temperature. Various analytical techniques, including FTIR, SEM, EDX, XRD, AFM, and TGA, are employed to monitor the physical characteristics of the samples before and after the treatment. In addition, mechanical properties, specifically impact and tensile behaviors, are assessed using an Izod impact tester and a universal testing machine (UTM). A 12 MeV electron beam is utilized at two doses: 60 kGy and 80 kGy. The results demonstrate that irradiation at 60 kGy results in significant enhancements in both physical and mechanical properties. In contrast, at 80 kGy, while some properties exhibit slight improvements, others show deterioration. Moreover, FTIR analysis reveals the elimination of hydroxyl groups at both irradiation doses. In addition, SEM and AFM analyses confirm that the surface properties of samples irradiated at 60 kGy are improved. Furthermore, XRD shows a decrease in crystallinity at this dose. Also, TGA results indicate that samples irradiated at 60 kGy possess higher thermal stability. Specifically, samples irradiated at 60 kGy show a 180% increase in impact strength, whereas those at 80 kGy show a 55% increase. Moreover, the Tensile strength increases by 2% for samples treated at 60 kGy, whereas it decreases by 34% for those treated at 80 kGy. Ultimately, the results confirm that upon electron beam irradiation of Bakelite valves, crosslinking dominates over degradation at 60 kGy, while degradation becomes dominant at 80 kGy.

Keywords


  1. Asim, M., Saba, N., Jawaid, M., Nasir, M., Pervaiz, M., & Alothman, O. Y. (2018). A review on phenolic resin and its composites. Current Analytical Chemistry, 14(3), 185-197. doi.org/10.2174/1573411013666171003154410.##
  2. Pilato, L. (Ed.). (2010). Phenolic resins: a century of progress (Vol. 11, p. 2010). New York: Springer. ##
  3. Wolff R., Ehrmann K., Knaack P., Seidler K., Gorsche C., Koch T., Stampfl J., Liska R. (2022) Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing, Polym. Chem. 13:768. doi.org/10.1039/d1py01665b. ##
  4. Strom E. Thomas, Rasmussen Seth C. (2011). [ACS Symposium Series] 100+ Years of Plastics. Leo Baekeland and Beyond Volume 1080 || Materia Polymerica: Bakelite. 10.1021/bk-2011-1080, 21–29. doi.org/10.1021/bk-2011-1080.ch003. ##
  5. Aneesh Kumar K.V., Krishnaveni S., Asokan K., Ranganathaiah C., Ravikumar H.B. (2018) Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer. Journal of Physics and Chemistry of Solids 113:74–81. doi.org/10.1016/j.jpcs.2017.10.023. ##
  6. Britannica, The Editors of Encyclopedia. “Bakelite”. Encyclopedia Britannica, 21 Dec. 2023, https://www.britannica.com/science/Bakelite. Accessed 7 May 2024. ##
  7. Harada N., Kunimi T., “Phenolic Resin Composition and Phenolic Resin Cured Product”, US. Pat. 2018, US 10144823B2. ##
  8. Talebzadeh M., Tavallali M.S., Aghili A., Heidari A. (2022) Mechanical, thermal and morphological properties of polyoxymethylene nanocomposite for application in gears of diaphragm gas meters. Journal of Polymer Engineering, 42:140-150. doi.org/10.1515/polyeng-2021-0113. ##
  9. Personal communication with R&D staffs of Fars Province Gas Company, 2023##
  10. Auhl D., Stadler F.J., Münstedt H. (2012) Comparison of Molecular Structure and Rheological Properties of Electron-beam and Gamma-irradiated Polypropylene, Macromolecules, 45: 2057-2065. doi.org/10.1021/ma202265w. ##
  11. Navarro R., Rubio Hernández-Sampelayo A., Adem E., Marcos-Fernández A. (2020) Effect of electron beam irradiation on the properties of poly(tetramethylene oxide) and a poly(tetramethylene oxide)-based polyurethane, Radiation Physics and Chemistry 174, 108905. doi.org/10.1016/j.radphyschem.2020.108905. ##
  12. Shafiei S., Nejabat G.R., Ahmadi M., Mortazavi S.M.M., Ahmadjo S. (2024). Investigation of electron beam irradiation’s effect on physical and rheological properties of LLDPE/Poly(1-Hexene) Blends. Nashrieh Shimi va Mohandesi Shimi Iran, 43:137-148. ##
  13. Aneesh Kumar K. V., Raghavendra M., Vinayakprasanna N. Hegde, Gnana Prakash A. P., Ravikumar H. B. (2021) Gamma irradiation induced microstructural modification and electrical conductivity of bakelite resistive plate chamber material, Journal of Radioanalytical and Nuclear Chemistry. 327:821–829. doi.org/10.1007/s10967-020-07565-z. ##
  14. Aneesh Kumar K.V., Ravikumar H. B., Ganesh S., Ranganathaiah C. (2015) Electron beam induced microstructural changes and electrical conductivity in bakelite RPC detector material, IEEE Transactions on Nuclear Science, 62:306-313. doi.org/10.1109/TNS.2014.2375916. ##
  15. Raghu, S., Archana, K., Sharanappa, C., Ganesh, S., & Devendrappa, H. (2015). The physical and chemical properties of gamma ray irradiated polymer electrolyte films. Journal of Non-Crystalline Solids, 426, 55-62. doi.org/10.1016/j.jnoncrysol.2015.06.018. ##
  16. Otaguro H., De L.L.F.C.P., Parra D.F., Lugao A.B., Chinelatto M.A., Canevarolo S.V. (2010) High-energy radiation forming chain scission and branching in polypropylene. Radiat Phys Chem 79:318–324. doi.org/10.1016/j.radphyschem.2009.11.003. ##
  17. Frison T, Seegers W.J. M., Totev D.I., Esteves A.C.C. (2024) Insights on chemical reactions and formation process of electron beam-cured acrylic networks, Macromolecules 57: 1291−1301. doi.org/10.1021/acs.macromol.3c02085. ##
  18. Özsin G. (2025) Exploring the thermal degradation of bakelite: non-isothermal kinetic modeling, thermodynamic insights, and evolved gas analysis via integrated in situ TGA/MS and TGA/FT-IR techniques, Polymers 17: 2197. doi.org/10.3390/polym17162197. ##
  19. Montoya-Ospina M. C., Verhoogt H., Ordner M., Tan X., Osswald T. A. (2022) Effect of cross-linking on the mechanical properties, degree of crystallinity and thermal stability of polyethylene vitrimers, Polym. Eng. Sci. 62: 4203-4213. doi.org/10.1002/pen.26178. ##
  20. Paajanen A., Vaari J., Verho T., (2019) Crystallization of cross-linked polyethylene by molecular dynamics simulation, Polymer, 171:80-86. doi.org/10.1016/j.polymer.2019.03.040. ##
  21. Khajehpour-Tadavani S., Nejabat G.R., Mortazavi S.M.M., (2020) Changes in crystallinity of HDPE films containing different amounts of an oxo-biodegradable additive due to UVC exposure, Polyolefins J, 7: 25-32. org/10.22063/poj.2019.2468.1135. ##
  22. Zarei S., Nejabat G.R., Mortazavi S.M.M, Khajehpour-Tadavani S., (2020) Thermal and tensile behavior of LLDPE films containing limited amounts of an oxo-biodegradable additive and/or amorphous poly(1-hexene) before and after UV irradiation, Polyolefins J, 7:111-119. doi.org/10.22063/poj.2020.2611.1149. ##
  23. Khajehpour-Tadavani S., Nejabat G.R., Mortazavi S.M.M., (2018) Oxo-biodegradability of high-density polyethylene films containing limited amount of isotactic polypropylene, J Appl Polym Sci, 135: 45843. doi.org/10.1002/app.45843. ##
  24. http://nebula.wsimg.com/efaf6ac6b3f3180508297c3c85716e52?AccessKeyId=6263AD687CF4EC78681C&disposition=0&alloworigin=1. ##