A Review of Aerogel Applications in Adsorption and Catalysis

Document Type : Research Paper


EEEL415, 2500 university dr nw


Aerogels are a special class of porous material, which have excellent physicochemical properties such as low density, high porosity, high surface area and adjustable surface chemistry. Aerogels were first prepared several decades ago, but never truly commercialized due to their high cost. Technological advancements in the production and quality of different types of aerogel cut costs down and market factors increase demand. Therefore, the viability of this porous material on the several applications has been widely studied. Among the various high-performance applications, aerogel has attracted significant attention as a chemical sorbent and catalyst for CO2 capture and conversion as well as methane conversion to value-added products. Although aerogel performance for zero CO2 emission to the environment is promising, some drawbacks of aerogels such as complicated drying process, mechanically weak structure and processing cost should also be considered in material development. Ultimately this review article will cover an overview regarding the aerogels synthesis, processing and their recent applications in CO2 capture and conversion.


Kistler S. S., “Coherent Expanded Aerogels and Jellies,” Nature, 1931.
Kistler S. S., “Coherent Expanded-Aerogels,” J. Phys. Chem., 1932, 36 , 52-64.
Moner M. A., Molins E., and Liber D., “Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents,” J. Sol-Gel Sci. Technol., 2003, 26, 645-649.
Aegerter M. A., Leventis N., and Koebel M. M. (3rd ed.), Aerogels Handbook, Springer, USA, 2011.
Horikawa T., Hayashi J., and Muroyama K., “Size Control and Characterization of Spherical Carbon Aerogel Particles from Resorcinol-formaldehyde Resin,” Carbon, 2004, 42, 169-175.
Kong Y., Zhong Y., Yang M., Teng K., and et al., “Facile Synthesis of Resorcinol–formaldehyde/Silica Composite Aerogels and their Transformation to Monolithic Carbon/silica and Carbon/silicon Carbide Composite Aerogels,” J. Non-Cryst. Solids., 2012, 358, 3150-3155.
Worsley M. A., Satcher Jr. J. H., and Baumann T. F., “Synthesis and Characterization of Monolithic, High Surface Area SiO2/C and SiC/C Composites,” J. Mater. Chem., 2010, 20, 4840-4844.
Wang J., Kuhn J., and Lu X., “Monolithic Silica Aerogel Insulation Doped with TiO2 Powder and Ceramic Fibers,” J. Non-Cryst. Solids., 1995, 186, 296-300.
Maleki H., Duraes L., and Portugal A., “An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies,” J. Non-Cryst. Solids., 2014, 385, 55-74.
Baetens B. P. J. R. and Gustavsen A., “Aerogel Insulation for Building Applications: A State of the Art Review,” Energy Build, 2011, 43, 761-769.
Kistler S. S., Swann S. J., and Appel E. G., “Aerogel Catalysts Thoria: Preparation of Catalyst and Conversions of Organic Acids to Ketones,” Ind. Eng. Chem., 1934, 26, 388-391.
Matias T., Marques J., Gando-Ferreira L., and Valente A. J. M., “Silica-based Aerogels as Adsorbents for Phenol-derivative Compounds,” Colloids Surf. A., 2015, 480, 260-269.
Plata D. L., Wolfe R. L., Carroll M. K., and Bakrania S. D., “Aerogel-platform Optical Sensors for Oxygen Gas,” J. Non-Cryst. Solids., 2004, 350, 326-335.
Nagahara H., Suginouchi T., and Hashimoto M., “P1M-8 Acoustic Properties of Nanofoam and its Applied Air-Borne Ultrasonic Transducers,” Proc. IEEE Ultrason. Symp., 2006, 3, 1541.
Long J. W., Fischer A. E., Bourg M. E., and Lytle J. C., “Self-limiting Electropolymerization en Route to Ultrathin, Conformal Polymer Coatings for Energy Storage Applications,” PMSE Preprints, 2008, 99, 772.
Steinbach S.and Ratke L., “The Microstructure Response to Fluid Flow Fields in Al-cast Alloys,” Trans. Indian Inst. Metals., 2007, 60, 167-171.
Yin W. and Rubenstein D. A., in: Koebel M.M. (5th ed.), Aerogels Handbook, Springer, USA, 2011, 683-694.
Pajonk G. M., “Aerogel Catalysts,” Appl. Catal., 1991, 72, 217-266.
Ulker Z., “Supercritical Fluid Technology for Energy and Environmental Application,” Journal of Supercritical Fluid Technology for Energy and Environmental Application, 2014, 157, 269-275.
Zuo L., Zhang Y., Zhang L., Miao Y.E., and et.al., “Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications,” Materials, 2015, 8, 6806-6848.
Hüsing N. and Schubert U., “Aerogels-Airy Materials: Chemistry, Structure, and Properties,” Angew. Chem. Int. Ed., 1998, 37, 22-45.
Brinker C. J., Keefer K. D., Schaefer D. W., and Ashley C. S., “Sol-gel Transition in Simple Silicates,” J. Non-Cryst. Solids., 1982, 48, 47-64.
Brinker C. J. and Scherer G. W., GW Scherer “Sol-Gel Science, (1st ed.),” Academic Press, New York, 1990.
Rao A., Pajonk G. M., and Koebel M. M., Aerogels handbook, Springer, USA, 2011.
Maleki H., Duraes L., and Portugal A., “Synthesis of Lightweight Polymer-reinforced Silica Aerogels with Improved Mechanical and Thermal Insulation Properties for Space Applications,” Micropor. Mesopor. Mater., 2014, 197, 116-129.
Hench L. L. and West J. K., “The Sol-gel Process,” Chem. Rev., 1990, 90, 33-72.
Iler R. K., Hench L. L., and Ulrich D. R., “Science of Ceramic Chemical Processing,” Wiley, 1986, 140-147.
Davis P. J., Brinker C. J., and Smith D. M., “Pore Structure Evolution in Silica Gel during Aging/drying I. Temporal and Thermal Aging,” J. Non-Cryst. Solids., 1992, 142, 189-196.
Strom R. A., Yasmine M., and Petermann G., “Strengthening and Aging of Wet Silica Gels for Up-scaling of Aerogel Preparation,” J. Sol-Gel Sci. Technol., 2007, 41, 291-298.
Maleki H., Duraes L., and Portugal A., “Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties,” J. Phys. Chem. C., 2015, 119, 7689-7703.
Chen H. B., Huang W., and Schiraldi D. A., “Fabrication and Properties of Irradiation-Cross-linked Poly (Vinyl Alcohol)/Clay Aerogel Composites,” ACS Appl. Mater. Interfaces., 2014, 6, 16227-16236.
Kawagishi K., Saito H., and Furukawa H., “Superior Nanoporous Polyimides via Supercritical CO2 Drying of Jungle-Gym-Type Polyimide Gels,” Macromol. Rapid Commun, 2007, 28, 96-100.
Matson D. W. and Smith R. D., “Supercritical Fluid Technologies for Ceramic-Processing Applications,” J. Am. Ceram. Soc., 1989, 72, 871-881.
Kalinin S. V., Mamchik A. I., and Vertegel A. A., “Influence of the Drying Technique on the Structure of Silica Gels,” J. Sol-Gel Sci. Technol., 1999, 15, 31-35.
Zeng S., Zhang X., Dong H., and Zhang X., “Efficient and Reversible Capture of SO2 by Pyridinium-based Ionic Liquids,” Chem. Eng. J., 2014, 251, 248-256.
Begag R., “Super-hydrophobic Aerogel as Sorbent Material for CO2 Capture,” Aspen Aerogels, 2011, 17-29.
Inoue S., Itakura T., Furukawa Y., and Yamanaka Y., “Experimental Study on CO2 Solubility in Aqueous Piperazine/alkanolamines Solutions at Stripper Conditions,” Energy Procedia, 2013, 37, 1751-1759.
Kong Y., Jiang G., Fan M., Shen X., and et al., “Use of One-pot Wet Gel or Precursor Preparation and Supercritical Drying Procedure for Development of a High-performance CO2 Sorbent,” RSC Adv., 2014, 4, 43448-43453.
Choi S., Drese J. H., and Jones C. W., “Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources,” ChemSusChem, 2009, 2, 796-854.
Yue M. B., Sun L. B., Cao Y., and Wang Z. J., “Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine,” Chem. Eur. J., 2008, 14, 3442-3451.
Uehara Y., Karami D., and Mahinpey N., “Roles of Cation and Anion of Amino Acid Anion-Functionalized Ionic Liquids Immobilized into a Porous Support for CO2 Capture,” Energy Fuels, 2018, 32(4), 5345-5354.
Uehara Y., Karami D., and Mahinpey N., “Effect of Water Vapor on CO2 Sorption–Desorption Behaviors of Supported Amino Acid Ionic Liquid Sorbents on Porous Microspheres,” Ind. Eng. Chem. Res., 2017, 56(48), 14316-14323.
Xu X., Andresen J. M., Miller B. G., and Scaroni A. W., “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture,” Energy Fuels, 2002, 16, 1463-1469.
Rechberger F., Ilari G., and Niederberger M., “Assembly of Antimony Doped tin Oxide Nanocrystals into Conducting Macroscopic Aerogel Monoliths,” Chem. Commun., 2014, 50, 13138-13141.
Qi G., Estevez L., Jones C. W., and Giannelis E., “High Efficiency Nanocomposite Sorbents for CO2 Capture Based on Amine-functionalized Mesoporous Capsules,” Energy Environ. Sci., 2011, 4, 444-452.
Linneen N., Pfeffer R., and Lin Y. S., “CO2 Capture Using Particulate Silica Aerogel Immobilized with Tetraethylenepentamine,” Micropor. Mesopor. Mater., 2013, 176, 123-131.
Nguyen S. T., Le T., and Duong H. M., “Cellulose Aerogel from Paper Waste for Crude Oil Spill Cleaning,” Ind. Eng. Chem. Res., 2013, 52, 18386-18391.
Begag R., Rhine W., Gould G., and Nahass P., “Superhydrophobic Amine Functionalized Aerogels as Sorbents for CO2 Capture,” Greenhouse Gas Sci. Technol., 2013, 3, 30-39.
Lin J. Y., Pfeffer R., “in: AIChE-Global Congr. on Process Safety-Annual Meeting,” US, 2012.
Karami D., Bararpour S. T., and Mahinpey N., “Highly Active Sorbents and Oxygen Carriers Supported by Calcined Alumina Aerogel for Low-temperature Carbon Capture and Chemical-looping Combustion of Methane”, A patent was filed in US patent office, V812601USP, 2016.
Bararpour S. T., Karami D., and Mahinpey N., “Effect of Various Types of Alumina Supports on the Carbonation Behavior of K2CO3: Comparing Physical Mixing and Incipient Wetness Impregnation Methods” Chemical Engineering Journal, 2018, 137, 138-157.
Howard C. J., “Sulfur Tolerant Highly Durable CO2 Sorbents,” US patent, 2010/0139486A, 2017.
Karami D. and Mahinpey N., “The Preparation of very Efficient and Stable Zirconia Stabilized CaO Aerogels for CO2 Capture at High Temperatures,” US Patent, 0346547A, 2010.
Karami D. and Mahinpey N., “Utilization of Alumina Aerogel as High Surface Area Support in the CLC Process,” Materials Chemistry and Physics, 99-111.
Bianchi D., Landoulsi H., Pajonk G. M., and Teichner S. J., “Aerogel catalysts,” Applied Catalysis Journal, 1991, 72, 217-266.
Blanchard F., Pommier B., Reymond J. P., and Teichner S. J., “On the Mechanism of the Fischer-Tropsch Synthesis Involving Unreduced Iron Catalyst,” J. Mol. Catal., 1982, 17, 171-181.
Pommier B., Reymond J. P., and Teichner S. J., “Fischer-Tropsch Synthesis on Oxidized Supported Iron Catalysts,” Zeitschrift für Physikalische Chemie Journal, 1985, 144, 203-222.
Blanchard F., Pommier B., and Teichner S. J., “New Fischer-Tropsch Catalysts of the Aerogel Type, in Studies in Surface Science and Catalysis,” Preparation of Catalysts III, Elsevier, Amsterdam, 1983, 16, 395-407.
Pommier B. and Teichner S. J., “On the Mechanism of the Fischer-Tropsch Synthesis Involving Unreduced Iron Catalyst,” in Proc. 9th Int. Congress on Catalysis, The Chemical Institute of Canada, Ottawa, 1988.
Droege M. W. and Westbrook C., Lawrence Livermore National Laboratory UCRL100768, 1989.
Armor J. N., Carlson E. J., Zambri P. M., “Aerogels as Hydrogenation Catalysts,” Appl. Catal., 1985, 19, 339-348.
Yamaguchi T., “Recent Progress in Solid Superacid,” Appl. Cat., 1990, 61, 1-25.
Ma J., Sun N., and Sun Y., “A Short Review of Catalysis for CO2 Conversion,” Catalysis Today, 2009, 148, 221-231.
Erdohelyi A., Cserenyi J., and Solymosi F., “Activation of CH4 and its Reaction with CO2 over Supported Rh Catalysts,” J. Catal., 1993, 141, 287-299.
Bitter H., Seshan K., Lercher J.A., “The state of zirconia supported platinum catalysts for CO2/CH4 reforming,” J. Catal., 1997, 171, 279-286.
McGee W. D., Pan Y., and Riley D. P., “Highly Selective Generation of Urethanes from Amines, Carbon Dioxide and Alkyl Chlorides,” J. Chem. Soc. Chem. Commun., 1994, 6, 699-700.
Corthals S., Nederkassel J., Noyen J. V., Moens B., and et al., “Influence of Composition of MgAl2O4 Supported NiCeO2ZrO2 Catalysts on Coke Formation and Catalyst Stability for Dry Reforming of Methane,” Catal. Today., 2008, 138, 28-32.
Nitta Y., Suwata O., and Okamoto Y., “Copper-zirconia Catalysts for Methanol Synthesis from Carbon Dioxide: Effect of ZnO Addition to Cu-ZrO2 catalysts,” Catal. Lett., 1994, 26, 345-354.
Arena F., Barbera K., Italiano G., Bonura G., and et al., “Synthesis, Characterization and Activity Pattern of Cu–ZnO/ZrO2 Catalysts in the Hydrogenation of Carbon Dioxide to Methanol,” J. Catal., 2007, 249, 185-194.
Dubois J. L., Sayama K., and Arakawa H., “CO2 Hydrogenation over Carbide Catalysts,” Chem. Lett., 1992, 21, 5-8.