Analysis of the Photo Conversion of Asphaltenes Using Laser Desorption Ionization Mass Spectrometry: Fragmentation, Ring Fusion, and Fullerene Formation

Document Type : Research Paper


1 Universidad de Carabobo, FACYT. Departamento de Química, Lab. Petróleo, Hidrocarburos y Derivados (PHD), Valencia Edo. Carabobo

2 Universidad Central de Venezuela, Facultad de Ciencias, Escuela de Química

3 Universidad de Carabobo, FACYT. Departamento de Química, Lab. Petróleo, Hidrocarburos y Derivados(PHD), Valencia Edo. Carabobo

4 3CNRS/UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Enviroment, UMR 5254, Helioparc,2 Av. Pr. Angot.

5 Laboratoire de fluides complexes, UMR 5150, Université de Pau et des Pays de l’Adour., Av. de Université-BP1155-64013. Pau, Cedex France


The conversion or photo conversion of asphaltenes to polycyclic aromatic hydrocarbons (PAH’s) promoted by a laser source is analyzed using both experimental and theoretical methods. We propose that during measurements performed at an intermediate laser power, fragmentation to afford PAH’s and ring fusion to yield fused PAH’s (FPAH’s) may occur either within molecular clusters (resin case) or within molecular aggregates (asphaltene case) which are vaporized or sublimed after ionization by the laser source. These events change the initial molecular mass distribution (MMD) of the sample to a continuous statistical MMD that can be fitted to a log-normal distribution. At a high laser power, the experimental MMD is converted to a sequence of Cn bands (n is an even number) which are separated by a 24-amu, the characteristic of a mixture of fullerene compounds.


Pereira T. M. C., Vanini G., Tose L.V., Cardoso F. M. R., and et al., “FT-ICR MS Analysis of Asphaltenes: Asphaltenes Go in, Fullerenes Come Out,” Journal of Fuel, 2014, 131, 49-58.
Rizzi A., Cosmina P. Flego C., Montanari L., Seraglia R., and et al., “Laser Desorption/Ionization Techniques in the Characterization of High Molecular Weight Oil Fractions. Part 1: Asphaltenes,” Journal of Mass Spectrometry, 2006, 41, 1232-1241.
Palacio L., Orrego-Ruiz J. A., Barrow M. P., Hernandez R. C., and et al., “Analysis of the Molecular Weight Distribution of Vacuum Residues and their Molecular Distillation Fractions by Laser Desorption Ionization Mass Spectrometry,” Journal of Fuel, 2016, 171, 247-252.
Hortal A. R., Hurtado P., Martínez-Haya B., and Mullins O. C., “Molecular-weight Distributions of Coal and Petroleum Asphaltenes from Laser Desorption/ionization Experiments,” Journal of Energy and Fuels, 21, 2863-2868.
Apicella B., Alfè M., Amoresano A., Galano E., and Ciajolo A., “Advantages and Limitations of Laser Desorption/ionization Mass Spectrometric Techniques in the Chemical Characterization of Complex Carbonaceous Materials,” International Journal of Mass Spectrometry, 2010, 295, 98-102.
Gámez F., Hortal A. R., Martínez-Haya B., Soltwisch J., and et al., “Ultraviolet Laser Desorption/ionization Mass Spectrometry of Single-core and Multi-core Polyaromatic Hydrocarbons under Variable Conditions of Collisional Cooling: Insights into the Generation of Molecular Ions, Fragments and Oligomers,” Journal of Mass Spectrometry, 2014, 49, 1127-1138.
Daaou M., Modarressi A., Bendedouch D., Bouhadda Y., Krier G., and et al., “Characterization of the Nonstable Fraction of Hassi−Messaoud Asphaltenes,” Journal of Energy and Fuels, 2008, 22, 3134-3142.
Santos V. G., Fasciotti M., Pudenzi M. A., Klitzke C. F., and et al., “Fullerenes in Asphaltenes and other Carbonaceous Materials: Natural Constituents or Laser Artifacts,” Journal of Analyst, 2016, 141, 2767-2773.
Buseck P. R., Tsipursky S. J., and Hettich R., “Fullerenes from the Geological Environment,” Journal of Science, 1992, 257, 215-217.
Becker L., Bada J. L., Winans R. E., Hunt J. E., and et al., “Fullerenes in the 1.85-billion-year-old Sudbury Impact Structure,” Journal of Science, 1994, 265, 642-645.
Daaou M., Larbi A., Martínez-Haya B., and Rogalski M., “A Comparative Study of the Chemical Structure of Asphaltenes from Algerian Petroleum Collected at Different Stages of Extraction and Processing,” Journal of Petroleum Science and Engineering, 2016, 138, 50–56.
Fergoug T., Boukratem C., Bounaceur B, and Bouhadda Y., “Laser Desorption/Ionization-Time of Flight (LDI-TOF) and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI – TOF) Mass Spectrometry of an Algerian Asphaltene,” Egyptian Journal of Petroleum, 2016, 26(3), 803-810.
Becker C., Qian K., and Russell D. H., “Molecular Weight Distributions of Asphaltenes and Deasphaltened Oils Studied by Laser Desorption Ionization and Ion Mobility Mass Spectrometry,” Journal of Analytical Chemistry, 2008, 80, 8592–8597.
Camacho-Bragado G. A., Espinosa M. M., Romero E. T., Murgich J., and et al., “Fullerenic Structures derived from Oil Asphaltenes,” Journal of Carbon, 2002, 40, 2761–2766.
Koolen H. H. F., Klitzke C. F., Cardoso F. M. R., Rosa P. T. V., and et al., “Fullerene Separation and Identification by Traveling Wave ion Mobility Mass Spectrometry in Laser Desorption Processes during Asphaltene Analysis,” Journal of Mass Spectrom, 2005, 51, 254–256.
Zhen J., Castellanos P., Paardekooper D., Linnartz H., and et al., “Laboratory Formation of Fullerenes from PAHs: Top-Down Interstellar Chemistry,” The Astrophysical J. Letters, 2014, 797, 30.
Acevedo S., Escobar G., Ranaudo M. A., and Rizzo A., “Molecular Weight Properties of Asphaltenes Calculated from GPC Data for Octylated Asphaltenes,” Journal of Fuel, 1998, 77(8), 853-858.
Wu Q., Pomerantz, A. E. Mullins O. C., and Zare R. N., “Laser-based Mass Spectrometric Determination of Aggregation Numbers for Petroleum and Coal-derived Asphaltenes,” Journal of Energy and Fuels, 2014, 28, 475-482.
Mahajan T. B., Elsila J. E., Deamer D. W., and Zare R. N., “Formation of Carbon-carbon Bonds in the Photochemical Alkylation of Polycyclic Aromatic Hydrocarbons,” Journal of Origins of Life & Evolution of the Biosphere, 2003, 33, 17-35.
Lobato M. D., Pedrosa J. M., Hortal A. R., Martínez-Haya B., and et al., “Characterization and Langmuir Film Properties of Asphaltenes Extracted from Arabian Light Crude Oil,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 72–79.
Araujo P., Mendes M., and Oller N., “Contribution of Mass Spectrometry for Assessing Quality of Petroleum Fractions,” Journal of Petroleum Science & Engineering, 2013, 109, 198-205.
Pope C. and Howard J., “Thermochemical Properties of Curved PAH and Fullerenes- a Group Additivity Method Compared with mm3(92) and Mopac Predictions,” Journal of Physical Chemistry,” 1995, 99, 4306-4316.
Pope C. J., Marr J. A., and Howard J. B., “Chemistry of Fullerenes C60 and C70 Formation in Flames,” Journal of Physical Chemistry, 1993, 97, 11001-11013.
Acevedo S., Mendez B., Rojas A., Layrisse I., and et al., “Asphaltenes and Resins from the Orinoco Basin,” Journal of Fuel, 1985, 64, 1741-1747.
Stewart J. J. P., “Optimization of Parameters for Semi-empirical Methods V: Modification of NDDO Approximations and Application to 70 Elements,” Journal of Molecular Modeling, 2007, 13, 1173-1213.
Brinkmann G., Goedgebeur J., and McKay B. D., “The Generation of Fullerenes,” Journal of Chemical Information and Modeling, 2012, 52, 2910-2918.
Acevedo S., Gutiérrez L., Negrin G., Pereira J., and et al., “Molecular Weight of Petroleum Asphaltenes: A Comparison between Mass Spectrometry and Vapor Pressure Osmometry,” Journal of Energy & Fuels, 2005, 19, 1548-1560.
Yen, T. F., “Structural Differences between Asphaltenes Isolated from Petroleum and from Coal Liquid,” Journal of Chemistry of Asphaltenes, 1981, 195, 39-51.
Phipps C., “Laser Ablation and its Applications Laser Ablation of Energetic Polymer Solutions: Effect of Viscosity and Fluence on the Splashing Behavior,” Journal of Applied Physics A, Springer, 2009, 94(3), 657-665.
Cash G. G., “Heats of Formation of Curved PAH’s and C60: Graph Theoretical vs MM3(92) Predictions,” Journal of Physical Chemistry A, 1997, 101, 8094-8097.
Yen T. F., “Structural Differences between Asphaltenes Isolated from Petroleum and from Coal Liquid,” Journal of Chemistry of Asphaltenes, 1981, 195, 39-51.
Brinkmann G., Goedgebeur J., and McKay B. D., “The Generation of Fullerenes,” Journal of Chemical Information and Modeling, 2012, 52, 2910-2918.