FABRICATION AND ELECTROCATALYTIC APPLICATION OF NI-MODIFIED ELECTRODE TOWARD DETECTION OF PARACETAMOL

Document Type : Research Paper

Authors

Renewable Energy Department, Energy Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran, Iran

Abstract

In the present work, the modified nickel electrode was electrochemically fabricated and tested for the electro-oxidation of paracetamol in alkaline media. The methods of cyclic voltammetry (CV), chronoamperometry (CA), and impedance spectroscopy (EIS) were used to determine kinetic parameters such as transfer coefficient (α), the catalytic reaction rate constants (k), and the diffusion coefficient of paracetamol in the bulk of solution. The electrochemical results showed that the modified nickel electrode had a high electrocatalytic activity for the electro-oxidation of paracetamol around 400 mV/Ag.AgCl in alkaline media and the diffusion coefficient of paracetamol was obtained to be 3×10-6 cm2.s-1. It means that the modified nickel electrode is highly sensitive toward the detection of paracetamol.

Keywords


[1] Ameer B., Greenblatt J., “Pharmacological Review of Paracetamol (Paracetamol)”, Ann. Int. Med. 1974, 87, 202-2098.
[2] Palgarin J., Bermejo L.; “Flow-injection Stopped-flow Spectrofluorimetric Kinetic Determination of Paracetamol Based on its Oxidation Reaction by Hexacyanoferrate (III)”, Anal. Chim. Acta. 1996, 333, 59-69.
[3] Canada M., Reguera P., Ruiz Medina A., “Fast Determination of Paracetamol by Using a Very Simple Photometric Flow-through Sensing Device”, Pharm J. Biomed. Anal. 2000, 22, 59-68.
[4] Ramos M., Tyson J., Curran D., “Determina-tion of Acetaminophen by Flow Injection with On-line Chemical Derivatiza-tion: Investigations Using Visible and FT IR Spectrophotometry”, Anal. Chim. Acta . 1998, 364, 107-114.
[5] Li M. Jing L., “Electrochemical Behavior of Acetaminophen and its Detection on the PANI-MWCNTs Composite Modified Electrode”, Electrochim. Acta. 2007, 52 3250-3256.
[6] Wan Q., Wang X., Yu F., Wang X., Yang N., “Effects of Capacitance and Resistance of MWNT-film Coated Electrodes on Voltam-metric Detection of Acetamino-phen.”, Appl J. Electrochem. 2009, 39, 1145-1151.
[7] Sebastian G., Dimitrios K., Kampourisa, Rashid O. K., and Craig E. B., “A Critical Review of the Electro-catalysis Reported at C60 modified electrodes”, Electroanalysis, 2008, 20, 1507-1513.
[8] Antolini E., “Formation of Carbon-supported PtM Alloys for Low Temperature Fuel Cells: A Review”, Mater. Chem. Phys. 2003, 78, 563-573.
[9] Park K., Choi J., Kwon B., Lee S., Sung Y., Ha H., Hong S., Kim H., Wieckowski A., “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, J. Phys. Chem. 2002, 106, 1869-1877.
[10] Taraszewska J., Roslonek G., “Electro-catalytic Oxidation of Methanol on a Glassy Carbon Electrode Modified by Nickel Hydroxide Formed by Ex Situ Chemical Precipitation”, J. Electroanal. Chem. 1994, 364, 209-213.
[11] Wen T., Lin S., Tsai J., “Sulphur content and the hydrogen evolving activity of NiSx deposits using statistical experimental strategies”, J. Appl. Electrochem. 1994, 24, 233-238.
[12] Fan C., Piron D., Sleb A., Paradis P., “Study of Electrodeposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis”, J. Electrochem. Soc. 1994, 141, 382-387.
[13] Raj I., Vasu K., “Transition metal-based hydrogen electrodes in alkaline solution- electrocatalysis on nickel based binary alloy coatings”, J. Appl. Electrochem. 1990, 20, 32-38.
[14] Casadei M. A., Pletcher D., “The influence of conditions on the electrocatalytic hydro-genation of organic molecules”, Electro-chim. Acta. 1988, 33, 117-120.
[15] Berchmans S., Gomathi H., Prabhakara Rao G.,” Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode”, J. Electroanal. Chem. . 1995, 394, 267-270.
[16] Fleischmann M, Korinek K, Pletcher D; “The oxidation of organic compounds at a nickel anode in alkaline solution”; J. Electroanal. Chem. 1971, 31, 39-49.
[17] Van Effen R. M., Evans D. H., “A study of aldehyde oxidation at glassy carbon, mercury, copper, silver, gold and nickel anodes”, J. Electroanal. Chem. 1979, 103, 383-397.
[18] Motheo A. J., Machado S., Rabelo F., Santos Jr. J., “Electrochemical Study of Ethanol Oxidation on Nickel in Alkaline Media”, J. Braz. Chem. Soc. 1994, 5, 161-165.
[19] Marioli J. M., Luo P., Kuwana T., “Nickel-chromium Alloy Electrode as a Carbohydrate Detector for Liquid Chromatography”, Anal. Chim. Acta. 1993, 282, 571-580.
[20] Marioli J. M., Kuwana T., “Electrochemical Detection of Carbohydrates at Nickel-copper and Nickel-chromium-iron Alloy Electrodes”,Electroanalysis. 1993, 5, 11-15.
[21] Trasatti S., “Electrodes of Conductive Metallic Oxides:Part B”, Elsevier, New York, 1980.
[22] Khulbe K. C., Mann R. S., Manoogian A., “Behavior of Nickel-copper Alloy in Hydrogenation, orthohydrogen-parahydro-gen Conversion and H2-D2 Exchange Reaction”, Chem. Rev. 1980, 80, 417-428.
[23] El-Shafei A. A., “Electrocatalytic Oxidation of Methanol at a Nickel Hydroxide/Glassy Carbon Modified Electrode in Alkaline Medium”, J. Electroanal. Chem. 1999, 471 89-95.
[24] Briggs G., Snodin P. R., “Ageing and the Diffusion Process at the Nickel Hydroxide Electrode”, Electrochim. Acta. 1982, 27, 565-572.
[25] Hahn F., Beden B., Croissant M., Lamy C., “In Situ UV Visible Reflectance Spectroscopic Investigation of the Nickel Electrode-alkaline Solution Interface”, Electrochim. Acta. 1986, 31, 335-342.
[26] Desilvestro J., Corrigan D., Weaver M., “Characterization of Redox States of Nickel Hydroxide Film Electrodes by In Situ Surface Raman Spectroscopy”, J. Electrochem. Soc. 1988, 135, 885-892.
[27] Barnard R., Randell C., “Studies Concerning Charged Nickel Hydroxide Electrodes. VII. Influence of Alkali Concentration on Anodic Peak Positions”, J. Appl. Electrochem. 1983, 13, 89-95.
[28] Bard A., Faulkner L., “Electrochemical Methods”; Wiley New York. 2001, 591.
[29] Danaee I., Jafarian M., Forouzandeh F., Gobal F., Mahjani M.G., International Journal of Hydrogen Energy. January 2009, 34, 859-869
[30] Khulbe K., Mann R., Manoogian A., “Behavior of Nickel-copper Alloy in Hydrogenation, Orthohydrogen-parahydro-gen Conversion and H2-D2 Exchange Reaction”, Chem. Rev. 1980, 80, 417-428.
[30] Fleischmann M., Korinek K., Pletcher D., “The Kinetics and Mechanism of the Oxidation of Amines and Alcohols at Oxide-covered Nickel, Silver, Copper, and Cobalt Electrodes”, J. Chem. Soc., Perkin Trans. 1972, 2, 1396-1402.
[31] Bard A., Faulkner L., “Electrochemical Methods, Fundamentals and Applications”; Chap. 5. Wiley, New York. 2001, 209.
[32] Vertes, G., Horanyi, G., Nagy, F., “A New Method for the Electrochemical Oxidation of Alcohols”, Tetrahedron. 1972, 28, 37-42.
[33] Losada J., del Peso I., Beyer L. J., “Redox and Electrocatalytic Properties of Electrodes Modified by Films of Polypyrrole Nickel(II) Schiff-base Complexes”, J. Electoanal. Chem. 1998, 447, 147-154.