Bis(Imino) Pyridyl Iron Complexes: the Effect of Polymerization Conditions on Activities and Thermal Behaviors of Polyethylene

Document Type: Research Paper

Authors

1 Iran Polymer and Petrochemical Institute

2 Ferdowsi University of Mashhad

Abstract

Two late transition metal catalysts based on 2,6-bis(imino)pyridine iron(II) were synthesized by introducing methyl substitution (catalyst A) and t-Butyl substitution (catalyst B) at the ortho position of the aryl rings of the ligand. Comparative ethylene polymerizations using the catalysts showed quiet different behaviors. The activity of catalyst A was higher than that of catalyst B in all of the polymerization conditions used. The highest activities of these catalysts were obtained at almost 25°C. Activities of the catalysts increased with increasing both monomer pressure and [Al]: [Fe] molar ratio. Multi modal peaks were appeared in the DSC analysis of oligomers obtained by catalyst A, while in the DSC analysis of the polymer obtained using catalyst B unimodal peaks were appeared. It is suggested that catalyst A containing less bulkier substitution produced polymer with different molecular weight fractions and different melting points. Besides, the t-butyl group in catalyst B resulted in producing polyethylene (PE) with single sharp DSC peaks; the latter is due to the formation of highly linear polyethylene. Polymerization temperatures affected the pattern of DSC thermograms in terms of number and shape of the peaks of the obtained polymers by catalyst A. Catalyst A produced linear oligomers contained liner olefinic part with a number average molecular weight in the range of 260 to 361.

Keywords


      [1]     Hoff R. and Mathers R. T., Handbook of Transition Metal Polymerization Catalyst, New Jersey: A John Wiley & Sons, Inc., Publication, 2010.

      [2]     Kaminsky W., Metal-organic Catalysts for Synthesis and Polymerization, Springer: Verlag, Heidelberg, 1999.

      [3]     Montagna A. A., Burkhart R. M., and Dekmezian A. H., “The Evolution of Single-Site Catalysis,” Chemical Technology, 1997, 27, 26-31.

      [4]     Johnson L. K., Killian C. M., and Brookhart M., “New Pd (I1)- and Ni (I1)-based Catalysts for Polymerization of Ethylene and α-Olefins,” Journal of American Chemical Society, 1995, 117, 6414-6415.

      [5]     Ittel S. D., Johnson L. K., and Brookhart M., “Late-metal Catalysts for Ethylene Homo and Copolymerization,” Chemical Reviews, 2000, 100, 1169-1203.

      [6]     Mecking S., “Olefin Polymerization by Late Transition Metal Complexes: a Root of Ziegler Catalysts Gains New Ground,” Angewandte Chemie International Edition, 2001, 40, 534-540.

      [7]     Small B. L. and Brookhart M., “Bennett AMA, Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene,” Journal of American Chemical Society, 1998, 120, 4049-4050.

      [8]     Bennett A. M. A., “Iron Catalyst for the Polymerization of Olefins,” U. S. Patent, 6214761, April 10 2001.

      [9]     Britovsek G. J. P., Gibson V. C., Kimberley B. S., Maddox P. J., et al. “Novel Olefin Polymerization Catalysts Based on Iron and Cobalt,” Chemical Communications, 1998, 7, 849-850.

    [10]    Small B. L. and Brookhart M., “Iron-based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear Olefins,” Journal of American Chemical Society, 1998,120, 7143-7144.

    [11]    Britovsek G. J. P., Gibson V. C., and Wass D. F.,The Search for New Generation Olefin Polymerization Catalysts: Life Beyond Metallocenes,” Angewandte Chem. International Edition,1999, 38, 428-447.

         [12]         Bennett A. M. A., “Polymerization of Ethylene with Specific Iron or Cobalt Complexes, Novel Pyridine bis (Imines) and Now With Iron and Cobalt,” 1998, WO9827124.

    [13]    McTavish S., Britovsek G. J. P., Smit T. M., Gibson V. C., et al., “Iron-based Ethylene Polymerization Catalysts Supported by Bis(Imino)Pyridine Ligands: Derivatization Via Deprotonation/ Alkylation at the Ketimine Methyl Position,” Journal of Molecular Catalysis A: Chemical,2007, 261, 293-300.

    [14]    Ionkin A. S., Marshall W. J., Adelman D. J., Shoe A. L., et al., “Nitro-substituted Iron(II) Tridentate Bis(imino)pyridine Complexes as High-temperature Catalysts for the Production of α-olefins,” Journal of Polymer Science: A Polymer Chemistry, 2006, 44, 2615-2635.

    [15]    Zohuri G. H., Damavandi S., Dianat E., Sandaroos R., et al., “Novel Functionalized Bis(Imino)Pyridine Cobalt(II) Catalysts for Ethylene Polymerization,” International Journal of Polymer Material,2011, 60, 776-786.

    [16]    Damavandi S., Zohuri G. H., Sandaroos R., and Ahmadjo S., “Novel Functionalized Bis(imino)pyridine Cobalt(II) Catalysts for Ethylene Polymerization,” International Journal of Polymer research,2012, 19, 9796-9800.

    [17]    Zohuri G. H., Seyedi S. M., Sandroos R., Damavandi S., et al., “Novel Late Transition Metal Catalysts Based on Iron: Synthesis, Structures and Ethylene Polymerization,” Catalysis Letter, 2010, 140, 160-166.

    [18]    Britovsek G. J. P., Bruce M., Gibson V. C., Kimberley B. S., et al., “Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6- Bis(Imino)Pyridyl Ligands: Synthesis, Structures and Polymerization Studies,” Journal of American Chemical Society, 1999, 121, 8728-8740.

    [19]    Britovsek G. J. P., Mastroianni S., Solan G. A., Baugh S. P. D., et al., “Oligomerization of Ethylene by Bis(Imino)Pyridyl Iron and Cobalt Complexes,” Chemical European Journal, 2000, 6, 2221-2231.

         [20]         Britovsek G. J. P., Baugh S. P. D., Hoarau O., Gibson V. C., et al., “The Role of Bulky Substituents in the Polymerization of Ethylene Using Late Transition Metal Catalysts: A Comparative Study of Nickel and Iron Catalysts,” Inorganica Chimica. Acta, 2003, 345, 279-291.

    [21]    Gibson V. C. and Solan G. A., “Iron-Based and Cobalt-Basad Olefin Polymerization Catalysts” Top Organomet Chem, Berlin Heidelberg, Springer-Verlag, 2008.

    [22]    Rieger B. L., Saunders B. L., Kacker S., and Striegler S., “Late Transition Metal Polymerization Catalysis,” 2003, Wiley-VCH:Weinheim.

         [23]         Ahmadjo S., Arabi H., Nekoomanesh M., Zohuri G. H., et al., “Comparative Study of Copolymerization and Terpolymerization of Ethylene/ Propylene/ Diene Monomers Using Metallocene Catalyst,” Macromol React. Eng., 2010, 4, 707-714.

         [24]         Mortazavi M. M., Arabi H., Zohuri G. H., Ahmadjo S., et al., “Copolymerization of Ethylene/α‐olefins Using Bis (2‐Phenylindenyl) Zirconium Dichloride Metallocene Catalyst: Structural Study of Comonomer Distribution,” Polymer International, 2010, 59, 1258-1265.

    [25]    Justino J., Dias A. R., Ascenso J., Marques M. M., et al., “Polymerization of Ethylene Using Metallocene and Aluminoxane Systems,” Polymer International, 1997, 44, 407-412.

    [26]    Fink G., Steinmetz B., Zechlin J., Przybyla C., et al., “Propene Polymerization with Silica-Supported Metallocene/MAO Catalysts,” Chemical Reviews, 2000, 100, 1377-1390.

    [27]    Busico V., Talarico G., and Cipullo R., “Living Ziegler-Natta Polymerizations: True or False,” Macromolecular Symposia, 2005, 226, 1-16.

    [28]    Chen J., Huang Y., Li Z., Zhang Z., et al., “Syntheses of Iron, Cobalt, Chromium, Copper and Zinc Complexes With Bulky Bis(Imino)Pyridyl Ligands and their Catalytic Behaviors in Ethylene Polymerization and Vinyl Polymerization of Norbornene,” Journal of Molecular Catalysis A: Chemical, 2006, 259, 133-141.

         [29]         Damavandi S., Samadieh N., Ahmadjo S., Etemadinia Z., et al., “Novel Ni-based FI Catalyst for Ethylene Polymerization,” European Polymer Journal, 2015, 64, 118-125.

    [30]    Galland G. B., Quijada R., Rojas R., Bazan G., et al., “NMR Study of Branched Polyethylenes Obtained with Combined Fe and Zr Catalysts,” Macromol, 2002, 3, 339-345.

         [31]         Pelascini F., Peruch F., Lutz P. J., Wesolek M., et al., “Pyridine Bis (Imino) Iron and Cobalt Complexes for Ethylene Polymerization: Influence of the Aryl Imino Substituents,” European Polymer Journal, 2005, 41, 1288-1295.