Solvent Pre-treated Effects of Carbon Nanotube-supported Cobalt Catalysts on Activity and Selectivity of Fischer-Tropsch Synthesis

Document Type : Research Paper

Authors

1 Gas Research Division, Research Institute of Petroleum Industry, (RIPI) Tehran, Iran

2 Process Development and Design, Research Institute of Petroleum Industry, (RIPI) Tehran, Iran

Abstract

In this study, the effect of preparation technique of carbon nanotube (CNT)-supported cobalt catalysts on the activity and selectivity of Fischer-Tropsch synthesis (FTS) was studied. Different concentrations of acetic acid were used for the pretreatment of the catalyst support to modify the surface properties of CNT. This modification improved the reduction degree and dispersion of supported cobalt simultaneously. The catalysts were prepared by incipient wetness impregnation of the cobalt precursor, and deionized water was used as the preparation medium. The obtained catalysts were characterized by XRD, TPR, TEM, and H2 chemisorption. The catalysts prepared under the optimum conditions exhibited significant stability and activity for FTS reaction in a CSTR reactor during 120 hr of experimental tests.

Keywords


      [1]     Bezemer G., Bitter L. J. H., Kuipers H. P. C. E., Oosterbeek H. et al., “Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts,” Journal of the American Chemical Society, 2006, 128, 3956–3964.##
     [2]     Tavasoli A., Malek Abbaslou R. M., Trepanier M., and Dalai A. K., “Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts,Journal of the American Chemical Society, 2006, 128, 3956–3964.##
      [3]     Jacobs J. L., Zhang G. Y., Das T., and Davis B. H., “Fischer–Tropsch Synthesis: Effect of Small Amounts of Boron, Ruthenium and Rhenium on Co/TiO2 Catalysts,” Applied Catalysis A: General, 2002, 223, 195-203.##
      [4]     Dry M. E., “High Quality Diesel via the Fischer–Tropsch Process,” Journal of Chemical Technology and Biotechnology, 2001, 77, 43-55.##
      [5]     Jacobs G., Das T. K., Zhang Y., Li J., and et al., “Fischer–Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts,” Applied Catalysis A: General, 2001, 233, 263-281.##
      [6]     Iglesia E., Soled S. L., and Fiato R. A., “Fischer-Tropsch Synthesis on Cobalt and Ruthenium. Metal Dispersion and Support Effects on Reaction Rate and Selectivity,” Journal of Catalysis, 1992, 137, 212-224.##
            [7]            Johnson B. G., Bartholomew C. H., and Goodman D. W., “The Role of Surface Structure and Dispersion in CO Hydrogenation on Cobalt,” Journal of Catalysis, 1991, 128, 231-247.##
      [8]     Tavasoli A., Mortazavi Y., Khodadadi A., Sadagiani K., and et al., “Effects of Different Loadings of Ru and Re on Physico-chemical Properties and Performance of 15% Co/Al2O3 FTS Catalysts,” Iranian Journal of Chemistry and Chemical Engineering, 2005, 35, 9-17.##
   [9]        Van Berge P. J., Van de Loosdrecht J., Barradas S., and Van Der Kraan A. M., “Oxidation of Cobalt Based Fischer-Tropsch Catalysts as a Deactivation Mechanism,” Catalysis Today, 2000, 58, 321-334.##
    [10]    Reuel R. C. and Bartholomew C. H., “Effects of Support and Dispersion on the CO Hydrogenation Activity/Selectivity Properties of Cobalt,” Journal of Catalysis, 1984,85, 78-88.##
    [11]    Bezemer G. L., van laak A., van Dillen A. J., and de Jong K. P., “Cobalt Supported on Carbon Nanofibers- a Promising Novel Fischer-Tropsch Catalyst,” Studies in Surface Science and Catalysis, 2004, 147, 259-264.##
    [12]    Serp P., Corrias M., and Kalck P., “Carbon Nanotubes and Nanofibers in Catalysis,” Applied Catalysis A: General, 2003, 253, 337-358.##
    [13]    Tavasoli A., Rashidi A., Sadaghiani K., Karimi A., Khodadadi A., and Mortazavi Y., “Carbon Nanotubes Supported Cobalt Catalyst for Converting Synthesis Gas into Hydrocarbons,” European Patent, EP 1782885, May 9. 2007.##
    [14]    Guczi L., Stefler G., Geszti O., Koppany Z. et al., “CO Hydrogenation over Cobalt and Iron Catalysts Supported over Multiwall Carbon Nanotubes: Effect of Preparation,” Journal of Catalysis, 2006, 244, 24-32.##
    [15]    Zhang Y., Liu Y., Yang G., Endo Y. et al., “The Solvent Effects during Preparation of Fischer-Tropsch Synthesis Catalysts: Improvement of Reducibility, Dispersion of Supported Cobalt and Stability of Catalyst,” Catalysis Today, 2009, 142, 85-89.##
    [16]    Ho S. W. and Su Y. S., “Effects of Ethanol Impregnation on the Properties of Silica-supported Cobalt Catalysts,” Journal of Catalysis, 1997, 168, 51-59.##
    [17]    Zhang Y., Hanayama K., and Tsubaki N., “The Surface Modification Effects of Silica Support by Organic Solvents for Fischer–Tropsch Synthesis Catalysts,” Catalysis Communications, 2006, 7, 251-254.##
    [18]    Zhang Y., Liu Y., Yang G., and Sun S., “Effects of Impregnation Solvent on Co/SiO2 Catalyst for Fischer-Tropsch Synthesis: A Highly Active and Stable Catalyst with Bimodal Sized Cobalt Particles,” Applied Catalysis A: General, 2007, 321, 79-85.##
    [19]    Ming H. and Baker B. G., “Characterization of Cobalt Fischer-Tropsch Catalysts I. Unpromoted Cobalt-Silica Gel Catalysts,” Applied Catalysis A: General, 1995, 123, 23-26.##
    [20]    Rashidi A. M., Nouralishahi A., Khodadadi A. A., and Mortazavi Y., “Modification of Single-walled Carbon Nanotubes (SWNT) for Hydrogen Storage,” International Journal of Hydrogen Energy, 2010, 35, 9489-9495.##
    [21]    Naeimi H., Mohajeri A., Moradi L., and Rashidi A. M., “Efficient and Facile One-pot Carboxylation of Multi-walled Carbon Nanotubes by Using Oxidation with Ozone under Mild Conditions,” Applied Surface Science, 2009, 256, 631-635.##
    [22]    Karimi A., Nakhaei Pour A., Torabi F., Hatami B. et al., “Fischer-Tropsch Synthesis over Ruthenium-promoted Co/Al2O3 Catalyst with Different Reduction Procedures,” Journal of National Gas Chemistry, 2010, 19, 503-508.##
    [23]    Tavasoli A., Sadagiani K., Khorashe F., and Seifkordi A. A., “Cobalt Supported on Carbon Nanotubes- A Promising Novel Fischer–Tropsch Synthesis Catalyst,” Fuel Processing Technology, 2008, 89, 491-498.##
    [24]    Rashidi A. M., Karimi A., Bozorgzadeh H. R., Kashefi K. et al., “Synthesis of SWNT’s over Nanoporous Co-Mo/MgO and Using as a Catalyst Support for Selective Hydrogenation of Syngas to Hydrocarbon,” Journal of National Gas Chemistry, 2010, 19, 548-551.##
    [25]    Fan L., Yokota K., and Fujimoto K., “Supercritical Phase Fischer-Tropsch Synthesis: Catalyst Pore-size Effect,” AIChE Journal, 1992, 38, 1639-1648.##
    [26]    Chen W., Fan Z., Pan X., and Bao X., J.“Effect of Confinement in Carbon Nanotubes on the Activity of Fischer−Tropsch Iron Catalyst,” Journal of the American Chemical Society, 2008, 130, 9414-9419.##
    [27]    Tavasoli A., Sadaghiani K., Nakhaeipour A., Ghalbi Ahangari M. et al., “Cobalt Loading Effects on the Structure and Activity for Fischer-Tropsch and Water-gas Shift Reactions of Co/Al2O3 Catalysts,” Iranian Journal of Chemistry and Chemical Engineering, 2007, 26, 10-16.##
    [28]    Trepanier M., Tavasoli A., Dalai A. K., and Abatzoglou N., “Fischer–Tropsch Synthesis over Carbon Nanotubes Supported Cobalt Catalysts in a Fixed Bed Reactor: Influence of Acid Treatment,” Fuel Processing Techology, 2009, 90, 367-374.##
    [29]    Trepanier M., Tavasoli A., Dalai A. K., and Abatzoglou N., “Co, Ru and K Loadings Effects on the Activity and Selectivity of Carbon Nanotubes Supported Cobalt Catalyst in Fischer–Tropsch Synthesis,” Applied Catalysis A: General, 2009, 353, 193-202.##
    [30]    Malek Abbaslou R. M., Tavasoli A., and Dalai AK., “Effect of Pre-treatment on Physico-chemical Properties and Stability of Carbon Nanotubes Supported Iron Fischer–Tropsch Catalysts,” Applied Catalysis A: General, 2009, 355, 33-41.##
 [31]      Karimi A., Rashidi A. M., and Nasernejad B., “Synthesis and Characterization of Multi-walled Carbon Nanotubes /Alumina Nanohybrid-supported Cobalt Catalyst in Fischer-Tropsch Synthesis,” Journal of National Gas Chemistry, 2013, 22, 582-590.##
    [32]    Trepanier M., Dalai A. K., and Abatzoglou N., “Synthesis of CNT-supported Cobalt Nanoparticle Catalysts Using a Microemulsion Technique: Role of Nanoparticle Size on Reducibility, Activity and Selectivity in Fischer–Tropsch Reaction,” Applied Catalysis A: General, 2010, 374, 79-86.##
    [33]    Talaei Z., Mahjoub A. R., Rashidi A. M., Amrollahi A. et al., “The Effect of Functionalized Group Concentration on the Stability and Thermal Conductivity of Carbon Nanotube Fluid as Heat Transfer Media,” International Communication in Heat and Mass Transfer, 2011, 38, 513-517.##
    [34]    Bronnimann C. E., Chuang I. S., Hawkins B. L., and Maciel G. E., “Dehydration of Silica-aluminas Monitored by High-resolution Solid-state Proton NMR,” Journal of The American Chemical Society, 1987, 109, 1562-1564.##
    [35]    Bronnimann C. E., Zeigler R. C., and Maciel G. E., “Proton NMR study of Dehydration of the Silica Gel Surface,” Journal of The American Chemical Society, 1988, 110, 2023-2026.##
    [36]    Qu Z., Huang W., Zhou S., Zheng H. et al., “Enhancement of the Catalytic Performance of Supported-metal Catalysts by Pretreatment of the Support,” Journal of Catalysis, 2005, 234, 33-36.##
    [37]    Uchino T., Aboshi A., Kohara S., Ohishi Y., et al., “Microscopic Structure of Nanometer-sized Silica Particles,” Physical Review B, 2004, 69, 155409.##
    [38]    van Steen E., Sewell G. S., Makhothe R. A., Micklethwaite C. et al., “TPR Study on the Preparation of Impregnated Co/SiO2 Catalysts,” Journal of Catalysis, 1996, 162, 220-229.##
    [39]    Sun S., Tsubaki N., and Fujimoto K., “The Reaction Performances and Characterization of Fischer–Tropsch Synthesis Co/SiO2 Catalysts Prepared from Mixed Cobalt Salts,” Applied Catalysis A: General, 2000, 202, 121-131.##
    [40]    Huffman G. P., Shah N., Zhao J., Huggins F. E., Hoost T. E., and et al., “In-Situ XAFS Investigation of K-promoted Co Catalysts,” Journal of Catalysis, 1994, 151, 17-25.##
    [41]    Lin H. Y. and Chen Y. W., “The Mechanism of Reduction of Cobalt by Hydrogen,” Material Chemistry and Physics, 2004, 85, 171-175.##
    [42]    Pan X., Fan Z., Chen W., Ding Y. et al., “Enhanced Ethanol Production inside Carbon-Nanotube Reactors Containing Catalytic Particles,” Nature Materials, 2007, 6, 507–511.##
 
    [43]    Bezemer G. L., Radstake P. B., Koot V., van Dillen A. J. et al., “Preparation of Fischer-Tropsch Cobalt Catalysts Supported on Carbon Nanofibers and Silica Using Homogeneous Deposition-precipitation,” Journal of Catalysis, 2006, 237, 291-302.##
    [44]    Das T. K., Jacobs G., Patterson P. M., Conner W. A. et al., “Fischer-Tropsch Synthesis: Characterization and Catalytic Properties of Rhenium Promoted Cobalt Alumina Catalysts,” Fuel, 2003, 82, 805-815.##
    [45]    TerÖrde R. J. A. M., Ph.D. Thesis, Utrecht University, Utrecht, the Netherlands, 1996.##
    [46]    Allison J. N., Goddard III W. A., “Oxidative Dehydrogenation of Methanol to Formaldehyde,” Journal of Catalysis, 1985, 92, 127-135.##