Preparation of BaCe0.9Yb0.1O3-δ asymmetrical membrane for hydrogen separation at high tempratures

Document Type: Research Paper

Authors

1 Chemical Engineering Department, Sharif University of Technology, Tehran, Iran

2 Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran

Abstract

A mixed proton–electron conducting perovskite was synthesized by liquid-citrate method and the corresponding membrane was prepared by pressing followed by sintering. The hydrogen permeability of BaCe0.9Yb0.1O3-δ was studied as a function of temperature and hydrogen partial pressure (PH2) gradient. Using 100% dry hydrogen at 1173 K, the hydrogen permeation rate of dense membranes (1.63 mm thick) for a mixture of 60% H2/He was 0.000293 mol/(m2 s). The phase structure of powder was characterized by X-ray diffraction and thermogravimetry (TG). Scanning electron microscopy (SEM) was used to investigate the microstructure of sintered membrane. Activation energy estimated with Arrhenius equation was 29 kJ/mol.

Keywords


[1] Y. Liu, X. Tan & K. Li, “Mixed Conducting Ceramics for Catalytic Membrane Processing Catalysis Reviews”, 48, pp. 145–198, 2009.

[2] S. Cheng, Vineet K. Gupta & Jerry Y.S. Lin, “Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes”, Solid State Ionics 176 , pp. 2653– 2662, 2005.

[3] Shane E., Roark, Richard Mackay & Anthony F. Sammells, Hydrogen separation membranes for vision 21 fossil fuel plants, Eltron Research Inc.

[4] Li J., Yoon H., Tak-Keun Oh & Eric D. Wachsman, “High temperature SrCe0.9Eu0.1O3-δ proton conducting membrane reactor for H2 production using the water–gas shift reaction”, Applied Catalysis B: Environmental 92, pp. 234–239, 2009.

[5] Matsuka M. , Roger D. Braddock , Matsumoto H., Sakai T., Igor E. Agranovski , Ishihara T., “Experimental and theoretical studies of hydrogen permeation for doped strontium cerates”, Solid State Ionics 181,pp. 1328–1335, 2010.

[6] Songa S.-J., Wachsmana E.D., J. Rhodesa, Dorrisb S.E. & Balachandranb U., “Hydrogen permeability of SrCe1-xMxO3-δ (x=0.05, M=Eu, Sm)”, Solid State Ionics, 167, pp. 99–105, 2004.

[7] Evdou A., Nalbandian L., Zaspalis V.T., “Perovskite membrane reactor for continuous and isothermal redox hydrogen production from the dissociation of water, Journal of Membrane Science”, 325, pp. 704–711, 2008.

[8] Kniep J. & Lin Y. S., “Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes”, Ind. Eng. Chem. Res., 49, pp. 2768–2774, 2010.

[9] Tsai C.-L., Kopczyk M., Smith R.J. & Schmidt V.H., “Low temperature sintering of Ba(Zr0.8−xCexY0.2)O3−δ using lithium fluoride additive”, Solid State Ionics 181 pp. 1083–1090, 2010.

[10] Cheng Sh., Vineet K. Gupta & Jerry Y.S. Lin, “Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes”, Solid State Ionics 176, pp. 2653–2662, 2005.

[11] Cheng Sh., Vineet K. Gupta, Jerry Y.S. Lin, “Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes”, Solid State Ionics 176, pp. 2653–2662, 2005.

[12] Matsuka M., Roger D. Braddock, Matsumoto H., Sakai T., Igor E. Agranovski & Ishihara T., “Experimental and theoretical studies of hydrogen permeation for dopedstrontium cerates”, Solid State Ionics 181, pp. 1328–1335, 2010.

[13] Matsuka M., Igor E. Agranovski, Roger D. Braddock, “Preparation of asymmetric perovskite-type membranes by a settlement method”, Ceramics International 36, pp. 643–651, 2010.

[14] Glenn C. Mather, Poulidi D., Thursfield A., María Jesús Pascual, José Ramón Jurado & Ian S. Metcalfe, “Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: Thermal”, ageing and surface-modification effects, Solid State Ionics 181, pp. 230–235, 2010.

[15] Kawamura Y., Isobe K. & Yamanishi T., “Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump”, Fusion Engineering and Design 82, pp.113–121, 2007.

[16] Osman N. & Talib I. A. & H. Hamid A., “Properties of sol–gel prepared BaCeO3 solid electrolyte using acetate precursors”, Ionics 15, pp. 203–208, 2009.

[17] Hughes S.W., Archimedes revisited: a faster, better, “cheaper method of accurately measuring the volume of small objects”, Phys. Educ. 40, pp. 468–474, 2005.

[18] Askeland D.R. & Phule P.P., The Science and Engineering of Materials, Thomson, Australia, 2006.

[19] Cai Mingya, Liu S., Efimov K., Caro J., Feldhoff A. & Wang H., “Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes”, Journal of Membrane Science 343, pp. 90–96, 2009.

[20] Li G.T., Xiong G.X., Sheng S.S. & Yang W.S., “Hydrogen permeation properties of perovskite-type BaCe0.9Mn0.1O3−δ dense ceramic membrane”, Chin. Chem. Lett. 12, pp. 937, 2001.

[21] Iwahara H., Esaka T., Uhida H., Yamauchi T. & Ogaki K., Solid State Ionics, pp. 18–19, 1003, 1986.

[22] Song S.-J., Wachsman E.D., Rhodes J., Dorris S.E. & Balachandran U., “Hydrogen permeability of SrCe1_xMxO3_d (x=0.05, M=Eu, Sm)”, Solid State Ionics 167, pp. 99–105, 2004.