Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

Document Type: Research Paper

Author

Research of Industrial petroleum Institute (RIPI)

Abstract

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide catalysts in plasma environment was in the order of Mn/W/SiO2> Mn/W/SiO2 / TEOS> Plasma only> Mn/W/CNT. The order changes to Mn/W/SiO2>Mn/W/CNT>Plasma only> Mn/W/SiO2/ TEOS, when the selectivity and yield of ethylene is considered. The highest yield to C2 hydrocarbons was 15.8%, which was obtained by using Mn/W/SiO2 in combination with gas discharge plasma without external heating; it was lower when the same feed composition was tested over this catalyst at 825 °C. The catalyst Na2WO4/Mn2O3/SiO2 –b1, which produces the least carbon oxides, gives rise to the highest production of higher hydrocarbons and ethylene. Catalysts Na2WO4/Mn2O3/SiO2 /TEOS-b2 and Na2WO4/Mn2O3/CNT-b3,due to their high selectivity toward carbon oxides, show low efficiency in producing more valuable hydrocarbons.

Keywords


      [1]     Lunsford J. H., “Catalytic Conversion of Methane to More Useful Chemicals and Fuels,” Catal. Today, 2000, 63, 165-173.##

            [2]            Holeman A., Olsvik O., and Rosktad O. A., “Pyrolysis of Natural Gas: Chemistry and Process Concepts,” Fuel Processing Technology,1995,42, 249-260.##

      [3]     Serrano D. P., Botas J. A., and Guil-Lopeza R.,H2 Production from Methane Pyrolysis over Commercial Carbon Catalysts Kinetic and Deactivation Study,”International Journal of Hydrogen Energy,2009, 34, 44-88.##

      [4]     Holeman A.,Direct Conversion of Methane to Fuels and Chemicals,” Catal. Today, 2009, 142, 2-8.##

      [5]     Rostrup-Nielsen J.,“Production of Synthesis Gas,” Catalysis Today, 1993, 18, 305–324.##

      [6]     Schulz H., “Short History and Present Trends of Fischer-Tropsch Synthesis,” Applied Catalysis A, 1999, 186, 3-12.##

      [7]     Nakhaei Pour A., Housaindokht M. A., Tayyari S F., Zarkesh J. et al., “Deactivation Studies of Fischer-Tropsch Synthesis on Nanostructured Iron Catalyst,” Journal of Molecular Catalysis A, 2010, 330,112-120.##

      [8]     Qijian Z., Dehua H., and Qiming Z.,“Direct Conversion of Methane into Oxygenates Role of Catalyst Location,” Natural Gas Chemistry, 2008, 17, 24-28.##

      [9]     Otsuka K. and Wang Y., “Direct Conversion of Methane into Oxygenates,” Applied Catalysis A, 2001, 222, 145-161.##

    [10]     Mimoun H., Robine A., Bonnaudet S., and Cameron C. J., “Recent Advances in the Oxtoattve Coupling of Methane,” Appl. Catal. A: Gen.,1990, 58, 269-280.##

    [11]     Fang X. and Li S., “Role of Sodium in the Oxidative Coupling of Methane over NA-W-MN/SIO2 Catalysts,”1992, 427.##

    [12]    Schweer D., Mleczko L., and Baerns M., “OCM in a Fixed-bed Reactor: Limits and Perspectives,” Catal. Today, 1994, 21, 357-369.##

    [13]    Liu C., Marafee A., Hill B., Xu G.,et al.,Oxidative Coupling of Methane with AC and DC Corona Discharges,” Ind. Eng. Chem. Res., 1996, 35, 3295-3301.##

    [14]    Liu C., Mallinson R., and Lobban L., “Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups,” Applied Catalysis, 1997, 164, 21-33.##

    [15]    Liu C., Mallinson R., and Lobban L., “Non-oxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma,” Journal of Catalysis, 1998, 179, 326-334.##

    [16]    Marafee A., Liu C., Xu G., Mallinson R. et al., “Methane Conversion to Higher Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups,” Ind. Eng. Chem. Res.,1997, 36, 632.##

    [17]    Zhou L. M., Xue B., Kogelschatz U., and Eliasson B., “Partial Oxidation of Methane to Methanol with Oxygen or Air in a Non-equilibrium Discharge Plasma,” Plasma Chemistry and Plasma Processing, 1998, 18, 375-393.##

         [18]         Liu Changjun., Mallinson R., and Lobban L., “Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites,” Applied Catalysis, 1999, 178, 17-27.##

    [19]    Eliasson B., Jun Liu C., and Kogelschatz U.,“Effect of Catalysts in Carbon Dioxide Reforming,” Ind. Eng. Chem. Res., 2000, 39, 1221-1227.##

    [20]    Aghamir F. M., Jalili A. H., Esfarayeni M. H., Khodagholi M .A. et al., “Conversion of Methane to Methanol in an AC Dielectric Barrier Discharge,” Plasma Sources Science and Technology, 2004, 13, 707-711.##

    [21]    Haji Tarverdi M. S., Mortazavi Y., Khodadadi A. A., and Mohajerzadeh SH.,“Conversion of Methane to C2+ Hydrocarbons in a Dielectric Barrier Discharge Reactor,” Chemistry and Chemical Engineering, 2005, 24(4), 63–71.##

    [22]    Yao S. L., Suzuki E., Meng N., and Nakayama A., “Effect of Voltage Waveform on Dielectric Barrier Discharge,” Energy and Fuels, 2001, 15, 1300-1303.##

    [23]    Shuiliang Y., Suzuki E., and Nakayama A.,A Novel Pulsed Plasma for Chemical Conversion,”Thin Solid Films,2001, 390, 165-169.##

    [24]     Ghorbanzadeh A. M. and Matin N. S., “Methane Conversion to Hydrogen and Higher Hydrocarbons by Double Pulsed Glow Discharge,” Plasma Chemistry and Plasma Processing, 2005, 25, 19-29.##

    [25]    Hongfei L., Yanying W., Jürgen C., and Haihui W., “Oxidative Coupling of Methane with High C2 Yield by using ChlorinatedPerovskite Ba0.5Sr0.5Fe0.2Co0.8O3−δ as Catalyst and N2O as Oxidant,”Chem. Cat. Chem., 2010, 2, 1539-1542.##

    [26]    Darwent B., “Bond Dissociation Energies in Simple Molecules,” U.S. National Bureau of Standards, 1970, 23.##

      [1]     Lunsford J. H., “Catalytic Conversion of Methane to More Useful Chemicals and Fuels,” Catal. Today, 2000, 63, 165-173. ##

            [2]            Holeman A., Olsvik O., and Rosktad O. A., “Pyrolysis of Natural Gas: Chemistry and Process Concepts,” Fuel Processing Technology,1995,42, 249-260. ##

      [3]     Serrano D. P., Botas J. A., and Guil-Lopeza R.,H2 Production from Methane Pyrolysis over Commercial Carbon Catalysts Kinetic and Deactivation Study,”International Journal of Hydrogen Energy,2009, 34, 44-88. ##

      [4]     Holeman A.,Direct Conversion of Methane to Fuels and Chemicals,” Catal. Today, 2009, 142, 2-8.##

      [5]     Rostrup-Nielsen J.,“Production of Synthesis Gas,” Catalysis Today, 1993, 18, 305–324.##

      [6]     Schulz H., “Short History and Present Trends of Fischer-Tropsch Synthesis,” Applied Catalysis A, 1999, 186, 3-12.##

      [7]     Nakhaei Pour A., Housaindokht M. A., Tayyari S F., Zarkesh J. et al., “Deactivation Studies of Fischer-Tropsch Synthesis on Nanostructured Iron Catalyst,” Journal of Molecular Catalysis A, 2010, 330,112-120.##

      [8]     Qijian Z., Dehua H., and Qiming Z.,“Direct Conversion of Methane into Oxygenates Role of Catalyst Location,” Natural Gas Chemistry, 2008, 17, 24-28.##

      [9]     Otsuka K. and Wang Y., “Direct Conversion of Methane into Oxygenates,” Applied Catalysis A, 2001, 222, 145-161.##

    [10]     Mimoun H., Robine A., Bonnaudet S., and Cameron C. J., “Recent Advances in the Oxtoattve Coupling of Methane,” Appl. Catal. A: Gen.,1990, 58, 269-280.##

    [11]     Fang X. and Li S., “Role of Sodium in the Oxidative Coupling of Methane over NA-W-MN/SIO2 Catalysts,”1992, 427.##

    [12]    Schweer D., Mleczko L., and Baerns M., “OCM in a Fixed-bed Reactor: Limits and Perspectives,” Catal. Today, 1994, 21, 357-369.##

    [13]    Liu C., Marafee A., Hill B., Xu G.,et al.,Oxidative Coupling of Methane with AC and DC Corona Discharges,” Ind. Eng. Chem. Res., 1996, 35, 3295-3301.##

    [14]    Liu C., Mallinson R., and Lobban L., “Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups,” Applied Catalysis, 1997, 164, 21-33.##

    [15]    Liu C., Mallinson R., and Lobban L., “Non-oxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma,” Journal of Catalysis, 1998, 179, 326-334.##

    [16]    Marafee A., Liu C., Xu G., Mallinson R. et al., “Methane Conversion to Higher Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups,” Ind. Eng. Chem. Res.,1997, 36, 632.##

    [17]    Zhou L. M., Xue B., Kogelschatz U., and Eliasson B., “Partial Oxidation of Methane to Methanol with Oxygen or Air in a Non-equilibrium Discharge Plasma,” Plasma Chemistry and Plasma Processing, 1998, 18, 375-393.##

         [18]         Liu Changjun., Mallinson R., and Lobban L., “Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites,” Applied Catalysis, 1999, 178, 17-27.##

    [19]    Eliasson B., Jun Liu C., and Kogelschatz U.,“Effect of Catalysts in Carbon Dioxide Reforming,” Ind. Eng. Chem. Res., 2000, 39, 1221-1227.##

    [20]    Aghamir F. M., Jalili A. H., Esfarayeni M. H., Khodagholi M .A. et al., “Conversion of Methane to Methanol in an AC Dielectric Barrier Discharge,” Plasma Sources Science and Technology, 2004, 13, 707-711.##

    [21]    Haji Tarverdi M. S., Mortazavi Y., Khodadadi A. A., and Mohajerzadeh SH.,“Conversion of Methane to C2+ Hydrocarbons in a Dielectric Barrier Discharge Reactor,” Chemistry and Chemical Engineering, 2005, 24(4), 63–71.##

    [22]    Yao S. L., Suzuki E., Meng N., and Nakayama A., “Effect of Voltage Waveform on Dielectric Barrier Discharge,” Energy and Fuels, 2001, 15, 1300-1303.##

    [23]    Shuiliang Y., Suzuki E., and Nakayama A.,A Novel Pulsed Plasma for Chemical Conversion,”Thin Solid Films,2001, 390, 165-169.##

 

    [24]     Ghorbanzadeh A. M. and Matin N. S., “Methane Conversion to Hydrogen and Higher Hydrocarbons by Double Pulsed Glow Discharge,” Plasma Chemistry and Plasma Processing, 2005, 25, 19-29.##

    [25]    Hongfei L., Yanying W., Jürgen C., and Haihui W., “Oxidative Coupling of Methane with High C2 Yield by using ChlorinatedPerovskite Ba0.5Sr0.5Fe0.2Co0.8O3−δ as Catalyst and N2O as Oxidant,”Chem. Cat. Chem., 2010, 2, 1539-1542.##

[26]  Darwent B., “Bond Dissociation Energies in Simple Molecules,” U.S. National Bureau of Standards, 1970, 23.##