Effect of calcium promoter on nano structure iron catalyst for Fischer–Tropsch synthesis

Document Type : Research Paper


1 Research Institute of Petroleum Industry (RIPI)

2 Research Institute of Petroleum Industry(RIPI)


The Fischer-Tropsch synthesis (FTS) has been recognized as a heterogeneous surface-catalyzed polymerization process. During this process, CHx monomers formed via the hydrogenation of adsorbed CO on transition metals produce hydrocarbons and oxygenates with a broad range of chain lengths and functional groups. A series of Fe/Cu Fischer-Tropsch synthesis catalysts incorporated with a calcium promoter were prepared by a microemulsion method. The composition of the final nanosized iron catalysts in terms of the atomic ratio is as follows: 100Fe/4Cu, 100Fe/4Cu/2Ca, 100Fe/4Cu/4Ca. XRD, BET, TEM, and TPR techniques were used to study the catalysts phase, structure, and morphology. Fischer-Tropsch synthesis (FTS) reaction test was performed in a fixed bed reactor. All the promoted catalysts, compared to the unpromoted catalysts, have higher rates of FT and the secondary reaction for CO2 production. The formation of methane and light hydrocarbons is restrained with increasing the amount of calcium. The 100Fe/4Cu/2Ca shows the best performance between the prepared catalysts.


      [1]     Rao V. U. S., Stiegel G. J., Cinquegrane G. J., and Srivastava R. D., “Ron-based Catalysts for Slurry-phase Fischer-Tropsch Process: Technology Review,” Fuel Process. Techno., 1992, 30, 83-107.##
      [2]     O’Brien R. J., Xu L., Spicer R. L., Bao S., et al., “Activity and Selectivity of Precipitated Iron Fischer-Tropsch Catalysts,” Catal. Today, 1997, 36, 325-334.##
      [3]     Panpranot J., Kaewkun S., Praserthdam P., and Goodwin J. G., “Effect of Cobalt Precursors on the Dispersion of Cobalt on MCM-41,” Catal. Lett., 2003, 91, 95-102.##
      [4]     Mills G. A., “Catalysts for Fuels from Syngas,” IEA Coal Research, London, 1988, 34-44.##
      [5]     Duvenhage D. J. and Coville N. J., “Effect of K, Mn and Cr on the Fischer-Tropsch Activity of Fe:Co/TiO2 Catalysts,” Catal. Lett., 2005, 104, 129-133.##
      [6]     Yang Y., Xiang H. W., Xu Y. Y., Bai L., et al., “Effect of Potassium Promoter on Precipitated Iron-manganese Catalyst for Fischer-Tropsch Synthesis,” Appl. Catal. A, 2004, 266, 181-194.##
      [7]     Li T., Yang Y., Zhang C., An X., et al., “Effect of Manganese on an Iron-based Fischer-Tropsch Synthesis Catalyst Prepared from Ferrous Sulfate,” Fuel., 2007, 86, 921-928.##
      [8]     Li S., Krishnamoorthy S., Li A., Meitzner G. D., et al., “Promoted Iron-based Catalysts for the Fischer-Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties,” J. Catal., 2002, 206, 202-217.##
      [9]      Yu W., Wu B., Xu J., Tao Z., et al., “Effect of Pt Impregnation on a Precipitated Iron-based Fischer-Tropsch Synthesis Catalyst,” Catal. Lett., 2008, 125, 116-122.##
    [10]    Li S., Li A., Krishnamoorthy S., and Iglesia E., “Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-based Fischer-Tropsch Synthesis Catalysts,” Catal. Lett., 2001, 77, 197-205.##
    [11]    Fazlollahi F., Sarkari M., Gharebaghi H., Atashi H., et al., “Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide,” Chin. J. Chem. Eng., 2013, 21, 507-519.##
    [12]    Bai L., Xiang H. W., Li Y. W., Han Y. Z., et al., “Slurry Phase Fischer-Tropsch Synthesis over Manganese-promoted Iron Ultrafine Particle Catalyst,” Fuel., 2002, 81, 1577-1581.##
    [13]    Tao Z., Yang Y., Wan H., Li T., et al., “Effect of Manganese on a Potassium-promoted Iron-based Fischer-Tropsch Synthesis Catalyst,” Catalysis Letters., 2007, 114, 161-168.##
    [14]    Nattaporn L., James G., and Edgar L., “Fe-based Fischer-Tropsch Synthesis Catalysts Containing Carbide-forming Transition Metal Promoters,” Journal of Catalysis, 2008, 255, 104-113.##
    [15]    Feyzi M., Irandoust M., and Mirzaei A. A., “Effects of Promoters and Calcinations Conditions on the Catalytic Performance of Iron-manganese Catalysts for Fischer-Tropsch Synthesis,” Fuel. Pro. Tech., 2011, 92, 1136-1143.##
    [16]    Nakhaei Pour A., Taghipoor S., Shekarriz M., Shahri S. M. K., et al., “Fisher-Tropsch Synthesis with Fe/Cu/La/SiO2 Nanostructured Catalyst,” J. Nanosci. Nanotech., 2008, 8, 1-5.##
    [17]    Zamani Y., Bakavoli M., Rahimizadeh M., Mohajeri A., et al., “Synergetic Effect of La and Ba Promoters on Nanostructured Iron Catalyst in Fischer-Tropsch Synthesis,” Chin. J. Catal., 2012, 33, 1119-1124.##
    [18]    Zamani Y., Yousefian S. H., Pour A. N., Moshtari B., et al., “A Method for the Regeneration of Used Fe-ZSM5 Catalyst in Fischer-Tropsch Synthesis,” Chem. Eng. Trans., 2010, 21, 1045-1051.##
    [19]    Nakhaei Pour A., Kamali Shahri S. M., Bozorgzadeh H. R., Zamani Y, et al., “Effect of Mg, La and Ca Promoters on the Structure and Catalytic Behavior of Iron- based Catalysts in Fischer-Tropsch Synthesis,” Appl. Catal. A: Gen., 2008, 348, 201-208.##
    [20]    Herranz T., Rojas S., Pe´ rez-Alonso F. J., Ojeda M., et al., “Hydrogenation of Carbon Oxides over Promoted Fe-Mn Catalysts Prepared by the Microemulsion Methodology,” Appl. Catal. A, 2006, 311, 66-75.##
    [21]    Bukur D. B., Nowicki L., Manne R. K., and Lang X. S., “Activation Studies with a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis: II Reaction Studies,” J. Catal., 1995, 155, 366-375.##
    [22]    Li S., O’Brien R. J., Meitzner G. D., Hamdeh H., et al., “Structural Analysis of Unpromoted Fe-based Fischer-Tropsch Catalysts Using X-ray Absorption Spectroscopy,” Appl. Catal. A: Gen., 2001, 219, 215-222.##
    [23]    Yang Y., Xiang H. W., Xu Y. Y., Bai L., et al., “Effect of Potassium Promoter on Precipitated Iron-manganese Catalyst for Fischer-Tropsch Synthesis,” Appl. Catal. A: Gen., 2004, 266, 181-194.##