[1] Maron D. M. and Cohen S., “Hydrodynamics and Heat/mass Transfer Near Rotating Surfaces,” Adv. Heat Transfer, 1991, 21, 141-183.
[2] Childs P. R. N. and Long C. A., “Review of Forced Convective Heat Transfer in Stationary and Rotating Annuli,” Proc. IMechE C: Mech. Eng. Sci., 1996, 210, 123-134.
[3] Khellaf K. and Lauriat G., “Numerical Study of Heat Transfer in a Non-Newtonian Carreau-fluid Between Ro-tating Concentric Vertical Cylinders,” J. Non-Newtonian Fluid Mech., 2000, 89, 45-61.
[4] Naimi M., Devienne R., and Lebouché M., “Etude Dynamique et Thermique de l’écoulement de Coquette-taylor-poiseuille; Cas d’un Fluide Présentant un Seuil dé Coulement (Dynamical and Thermal Study of Couette-taylor- poiseuille Flow; Case of Yield Pseudo-plastic Fluid),” Int. J. Heat Mass Transfer, 1990, 33, 381-391.
[5] Pinho F. T. and Coelho P. M., “Fully-developed Heat Transfer in Annuli for Viscoelastic Fluids with Viscous Dissipa-tion,” J. Non-Newtonian Fluid Mech., 2006, 138, 7-21.
[6] Mirzazadeh M., “Simulation of Visco-elastic Fluid Flow with PTT Model in Annulus,” Ph.D. Thesis, Amirkabir Univer-sity of Technology, Iran, 2007.
[7] Khatibi A. M., Mirzazadeh M., and Rashidi F., “Forced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Pipes and Channels,” J. Heat Mass Transfer, 2010, 46, 405-412.
[8] Giesekus H., “A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation-dependent Ten-sorial Mobility,” J. Non-Newtonian Fluid Mech., 1982, 11, 69-109.
[9] Giesekus H., “Stressing Behavior in Simple Shear Flow as Predicted by a New
Consecutive Model for Polymer Fluids,” J. Non-Newtonian Fluid Mech., 1983, 12, 367-374.
[10] Bird R. B., Armstrong R. C., and Hassager O., Dynamics of Polymeric Liquids: Fluid Mechanics, New York: Wiley, 1977.
[11] Takht Ravanchi M., Mirzazadeh M., and Rashidi F., “Flow of Giesekus Viscoelastic Fluid in a Concentric Annulus with Inner Cylinder Rotation,” Int. J. Heat and Fluid Flow, 2007, 28, 838-845.