Document Type : Research Paper


1 Reseach institute of petroleum industry, RIPI

2 Research Institute of Petroleum Industry (RIPI)



Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined to assess their effects on the SWNT synthesis. The influence of these parameters on the carbon nanotubes yield and quality is also reported. Single-walled carbon nanotubes were characterized by using different characterization techniques including thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD). Under the optimum operation conditions (900 °C, 30 min, rate of gas=1800 ml/min, heating rate of 7 °C/min, size of catalyst particle=212 μm, volumetric ratio of hydrocarbon source to hydrogen=1:1), single-walled carbon nanotubes with an average diameter of 0.9 nm and a yield of 300% (related to the catalyst) were produced.


      [1]     Iijima S., “Helical Microtubules of Graphitic Carbon,” Nature, 1991, 354, 56-58.
      [2]     Bethune D. S., Klang C. H., Vries M. S., Gorman G., et al., “Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls,” Nature,1993, 363, 605-607.
      [3]     Iijima S. and Ichihashi T., “Single-shell Carbon Nanotubes of 1-nm Diameter.” Nature, 1993, 363, 603-605.
      [4]     Vairavapandian D., Vichchulada P., and Lay M. D., “Preparation and Modification of Carbon Nanotubes: Review of Recent Advances and Applications in Catalysis and Sensing,” Anal. Chim. Acta., 2008, 626(2), 119-129.
      [5]     Ebbesen T. W. and Ajayan P. M., “Large-scale Synthesis of Carbon Nanotubes,” Nature, 1992, 358, 220-222.
      [6]     Shi Z., Lian Y., Zhou X., Gu Z., et al., “Mass-production of Single-walled Carbon Nanotubes by Arc Discharge Method,” Carbon, 1999, 37(9), 1449-1453.
      [7]     Liu C., Cong H. T., Li F., Cheng H. M., et al., “Semi-continuous Synthesis of Single-walled Carbon Nanotubes by a Hydrogen Arc Discharge Method,” Carbon,1999, 37(11), 1865-1868.
      [8]     Guo T., Nikolaev P., Thess A., Colbert D.T., et al., “Catalytic Growth of Single-walled Nanotubes by Laser Vaporization,” Chem. Phys. Lett., 1995, 243, 49-54.
      [9]     Thess A., Lee R., Nikolaev P., Dai H., et al., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 1996, 273, 483-487.
    [10]    Hernadi K., Fonseca A., Nagy J., Bernaerts D., et al., “Fe-catalyzed Carbon Nanotube Formation,” Carbon, 1996, 34(10), 1249-1257.
    [11]    Hernadi K., Fonseca A., Nagy J. B., Siska A., et al., “Production of Nanotubes by the Catalytic Decomposition of Different Car-bon-containing Compounds,” Appl. Catal. A.,2000, 199(2), 245-255.
    [12]    Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., et al., “Synthesis of Large Arrays of Well-aligned Carbon Nanotubes on Glass,” Science, 1998, 282(5391), 1105-1107.
    [13]    Li Y., Chen J., Qin Y., and Chang L., “Simultaneous Production of Hydrogen and Nanocarbon from Decomposition of Methane on a Nickel-based Catalyst,” Energy & Fuels, 2000, 14(6), 1188-1194.
    [14]    Meier A., Kirillov V. A., Kushinov G. G., Mogilnykh Y. I., et al., “Solar Thermal Decomposition of Hydrocarbons and Carbon Monoxide for the Production of Catalytic Filamentous Carbon,” Chem. Eng. Sci., 1999, 54, 3341-3348.
    [15]    Venegoni D., Serp P., Feurer R., Kihn Y., et al., “Parametric Study for the Growth of Carbon Nanotubes by Catalytic Chemical Vapor Deposition in a Fluidized Bed Reactor,” Carbon, 2002,40(10), 1799-1807.
    [16]    Qian W., Wei F., Wang Z., Liu T., et al., “Effect of Adding Nickel to Iron-alumina Catalysts on the Morphology of as-grown Carbon Nanotubes,” AICHE, 2003, 49(3), 619-625.
    [17]    Chenga J., Zhang X., Luo Z., Liu F., et al., “Carbon Nanotube Synthesis and Parametric Study Using CaCO3 Nanocrystals as Catalyst Support by CVD,” Mater. Chem. Phys., 2006, 95, 5-11.
    [18]    Maschmann M. R., Franklin A. D., Sands T. D., and Fisher T. S., “Optimization of Carbon Nanotube Synthesis from Porous Anodic Al-Fe-Al Templates,” Carbon, 2007, 45(11), 2290-2296.
    [19]    Hsieh C. T., Lin Y. T., Chen W. Y., and Wei J. L., “Parameter Setting on Growth of Carbon Nanotubes over Transition Metal/alumina Catalysts in a Fluidized Bed Reactor,” Powder Technology, 2009, 192, 16-22.
    [20]    Tomohiro N., Takuya K., Shinpei Y., and Ken O., “Parametric Study for Selective Growth of Single-walled Carbon Nano-tubes in Plasma Enhanced Chemical Vapor Deposition,” Japanese Journal of Applied Physics, 2011, 50 01AF03.
    [21]    Rong X., Erik E., Jun O., Theerapo T., et al., “Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-walled Carbon Nanotubes,” Journal of Nanoscience and Nanotechnology,2010, 10(6), 3901-3906.
    [22]    Lin W., Shang J., Gu W., and Wong C. P., “Parametric Study of Intrinsic Thermal Transport in Vertically Aligned Multi-walled Carbon Nanotubes Using a Laser Flash Technique,” Carbon, 2012, 50(4), 1591-1603.
    [23]    Rashidi A. M., Akbarnejad M. M., Khodadadi A. A., Mortazavi Y., et al., “Single-wall Carbon Nanotubes Synthe-sized Using Organic Additives to Co–Mo Catalysts Supported on Nanoporous MgO,” J. Nanotechnol., 2007, 18(31) 315605.
    [24]    Sainz R., Small W. R., Young N. A., Valle´s C., et al., “Synthesis and Properties of Optically Active Polyaniline Carbon Nanotube Composites,” Macromolecules, 2006, 39(21), 7324-7332.
    [25]    Cuesta A., Dhamelincourt P., Laureyns J., Martinez-Alonso A., et al., “Raman Micro-probe Studies on Carbon Materials,” Carbon, 1994, 32(8), 1523-1532.
    [26]    Mamedov A. A., Kotov N. A., Prato M., Guldi D. M., et al., “Molecular Design of Strong Single-wall Carbon Nanotube/ Polyelectrolyte Multilayer Composites,” Nat. Mater., 2002, 1(3), 190-194.