Document Type : Research Paper


1 Iran Polymer and Petrochemical Institute

2 Ferdowsi University of Mashhad


Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface area of silica on the performance of the supported catalysts using three different types of silica including EP12 (390 m2/gr.), PQ3060 (570 m2/gr.) and MCM-41 (1100 m2/gr.) was investigated. The surface area had a more critical role relative to other characteristics of the support in the performance of catalysts. By using MCM-41 as support, the kinetic stability was enhanced. The activity of the supported catalysts was increased by increasing the surface area of silica in the order of MCM-41 > PQ3060 > EP12. The morphology of polymer particles was improved and reactor fouling was eliminated by supporting the catalyst.


      [1]     Heurtefeu B., Bouilhac C., Cloutet E., Taton D., et al., “Polymer Support of ‘Single-site’ Catalysts for Heterogeneous Olefin Polymerization,” Prog. Polym. Sci., 2011, 36, 89-126.
      [2]     Dos Santos J. H. Z., Greco P. P., Stedile F. C., and Dupont J., “Organosilicon-modified Silicas as Support for Zircono-cene Catalyst,” J. Mol. Catal. A: Chem., 2000, 154, 103-113.
      [3]     Deoliveira O. B., Brandao S. T., Freitas A. J. D., Da Silva E. P., et al., “High-temperature and High-pressure Ethylene Polymeriza-tion Using a Cationic Activated Metallo-cene Catalytic System,” Polym. Int., 2008, 57, 1012-1016.
      [4]     Chadwick J. C., Duchateau R., Freixa Z., and Van Leeuwen PWNM., Homogeneous Catalysts, Weinheim, Germany: Wiley-VCH, 2011.
      [5]     Shi L., Qin Y., Cheng W., Chen H., et al., “Effect of Swelling Response of the Support Particles on Ethylene Polymeriza-tion,” Polymer, 2007, 48, 2481-2488.
      [6]     De Freitas A. J. D., Dos Santos, J. H. Z., Meneghetti S. M. P., and Meneghetti M. R., “Polymerization of Ethylene: Some Aspects of Metallocene Catalyst Stabiliza-tion Under Homogeneous and Hetero-geneous Reaction Conditions,” J. Appl. Polym. Sci., 2011, 119, 3051-3057.
      [7]     Tisse V. F., Boisson C., Prades F., and Mckenna T. F. L., “A Study on the Activation and Deactivation of Metallo-cenes during the Polymerization of Ethylene over EtInd2ZrCl2 on Supported on an Activated Silica,” Chem. Eng. J., 2010, 15, 194-203.
      [8]     Mortazavi M. M., Ahmadjo S., Dos Santos J. H. Z., Arabi H., et al., “Characterization of MAO-modified Silicas for Ethylene Polymerization,” J. Appl. Polym. Sci., 2013, 130, 4568-4575.
      [9]     Severn J. R. and Chadwick J. C., “Immobi-lization of Homogeneous Olefin Polymer-ization Catalysts. Factors Influencing Activity and Stability,” Dalton Trans., 2013, 42, 8979-8987.
    [10]    Bunchongturakarn S., Jongsomjit B., and Praserthdam P., “Impact of Bimodal Pore MCM-41-Supported Zirconocene/DMMAO Catalyst on Copoly-merization of Ethylene/1-octene,” Catal. Comm., 2008, 9, 789-795.
    [11]    Grieken R. V., Carrero A., Suarez I., and Paraedes B., “Ethylene Polymerization over Supported MAO/ (nBuCp)2ZrCl2 Cata-lysts: Influence of Support properties,” Eur. Polym. J., 2007, 43, 1267-1277.
    [12]    Smit M., Zheng X., Loos J., Chadwick J. C., et al., “Effects of Methylaluminoxane Immobilization on Silica on the Perfor-mance of Zirconocene Catalysts in Propy-lene Polymerization,” J. Polym. Sci. Part A., 2005, 43, 2734-2748.
    [13]    Alobaidi F., Ye Z. H., and Zhu S. H., “Ethylene Polymerization with Silica-supported Nickel-diimine Catalyst: Effect of Support and Polymerization Conditions on Catalyst Activity and Polymer Proper-ties,” Macromol. Chem. Phys., 2003, 204, 1653-1659.
    [14]    Kamfjord T. H., Wester T. H. S., and Rytter E., “Supported Metallocene Catalysts Prepared by Impregnation of MAO Modified Silica by a Metallocene/ Monomer Solution,” Macromol. Rapid. Commun., 1998, 19, 505-509.
    [15]    Jongsomjit B., Ngamposri S., and Praserthdam P., “Catalytic Activity During Copolymerization of Ethylene and 1-Hexene Via Mixed TiO2/SiO2-Supported MAO with Rac-Et[Ind]2ZrCl2 Metallocene Catalyst,” Molecules., 2005, 10, 672-678.
    [16]    Marques M. F. V. and Conte A., “The Influence of the Preparing Conditions of SiO2 Supported Cp2ZrCl2 Catalyst on Ethylene Polymerization,” J. Appl. Polym. Sci., 2002, 86, 2054-2061.
    [17]    Pothirat T., Jongsomjit B., and Praserthdam P., “Comparative Study of SiO2- and ZrO2-supported Zirconocene/ MAO Catalysts on Ethylene/1-olefin Co-polymerization,” Catal. Comm., 2008, 9, 1426-1431.
    [18]    Hammawa H. and Wanke S. E., “Influence of Support Friability and Concentration of α-olefins on Gas-phase Ethylene Poly-merization over Polymer-supported Met-allocene/Methylaluminoxane Catalysts,” J. Appl. Polym. Sci., 2007, 104, 514-527.
    [19]    Li K. T., Dai C. L., and Kuo C. W., “Ethylene Polymerization over a Nano-sized Silica Supported Cp2ZrCl2/MAO Catalyst,” Catal. Comm., 2007, 8, 1209-1213.
    [20]    Paredes B., Soares J. B. P., Grieken R. V., Carrero A., et al., “Characterization of Ethylene-1-hexene Copolymers Made with Supported Metallocene Catalysts: Influence of Support Type,” Macromol. Symp., 2007, 257, 103-111.
    [21]    Zheng X., Smit M., Chadwick J. C., and Loos J., “Fragmentation Behavior of Silica-supported Metallocene/MAO Catalyst in the Early Stages of Olefin Polymerization,” Macromol., 2005, 38, 4673-4678.
    [22]    Wongwaiwattanakul P. and Jongsomjit B., “Copolymerization of Ethylene/1-octene via Different Pore Sized Silica-based-supported Zirconocene/dMMAO Cata-lysts,” Catal Comm., 2008, 10, 118-122.
    [23]    Franceschini F. C., Tavares T. T. R., Bianchini D., Alves M. C. M., et al., “Characterization and Evaluation of Sup-ported Rac-dimethylsilylenebis (indenyl) zirconium Dichloride on Ethylene Poly-merization,” J. Appl. Polym. Sci., 2009, 112, 563-571.
    [24]    Kumkaew P., Wu L., Praserthdam P., and Wanke S. E., “Rates and Product Properties of Polyethylene Produced by Copolymerization of 1-hexene and Ethylene in the Gas Phase with (n-BuCp)2ZrCl2 on Supports with Different Pore Sizes,” Polymer, 2003, 44, 4791-4803.
    [25]    Silveira F., Alves M. C. M., Stedile F. C., Pergher S. B., et al., “Effect of the Silica Texture on the Structure of Supported Metallocene Catalysts,” J. Mol. Catal. A: Chem., 2009, 298, 40-50.
    [26]    Silveira F., Petry C. F., Pozebon D., Pergher S. B., et al., “Supported Metallocene on Mesoporous Materials,” Appl. Catal. A: Gen., 2007, 333, 96-106.
    [27]    Franceschini F. C., Tavares T. T. R., Santos J. H. Z., Soares J. B. P., et al., “Comparative Study of Propylene Polymerization Using Me2Si(RInd)2ZrCl2/SiO2eSMAO/AlR3 and Me2Si (RInd)2ZrCl2/MAO (R=Me,H),” Poly-mer, 2007, 48, 1940-1953.
    [28]    Franceschini F. C., Tavares T. T. R., Greco P. P., Bianchini D., et al., “Polypropylene Obtained with In Situ Supported Metallo-cene Catalysts,” J. Mol. Catal. A: Chem., 2003, 202, 127-134.
    [29]    Nekoomanesh M., Arabi H., Nejabat G. R., Emami M., et al., “Preparation of Polyethylene Nanofibers Using Rod-like MCM-41/TiCl4/MgCl2/THF Bi-supported Ziegler-natta Catalytic System,” I. J. Polym. Sci. Tec., 2008, 3, 243-250.
    [30]    Mortazavi M. M., Arabi H., Zohuri G. H., Ahmadjo S., et al., “Ethylene Homo- and Copolymerization Using a Bis-IndZrCl2 Metallocene Catalyst: Structural Composi-tion Distribution of the Copolymer,” Macromol. React. Eng., 2011, 3, 263-270.
    [31]    Dos Santos J. H. Z., Williams R. J. J., Fasce D. P., DellErba I. E., et al., “Effects of Ethylene Polymerization Conditions on the Activity of SiO2-supported Zircono-cene and on Polymer Properties,” J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 1987-1996.
    [32]    Xiao X., Sun J., Li X., Wang Y., et al., “Ethylene Polymerization with Novel Bridged tri- and Tetranuclear Titano-cene/MAO Systems,” Eur. Polym. J., 2007, 43, 164-171.
    [33]    Ma L., Sheng Y., Hung Q., Zhao Y., et al., “A Kind of Novel Nonmetallocene Catalysts for Ethylene Polymerization,” J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 33-37.
    [34]    Bergstra M. F. and Weickert G., “Ethylene Polymerization Kinetics with a Hetero-geneous Metallocene Catalyst-compari-son of Gas and Slurry Dhases,” Macromol. Mater. Eng., 2005, 290, 610-620.
    [35]    Shan C. L. P., Soares J. B. P., and Penlidis A., “Ethylene/1-octene Copolymerization Studies with In situ Supported Metallo-cene Catalysts: Effect of Polymerization Parameters on the Catalyst Activity and Polymer Microstructure,” J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 4426- 4454.
    [36]    Awudza J. A. M. and Tait P. J. T., “The ‘Comonomer Effect’ in Ethylene/α-olefin Copolymerization Using Homogeneous and Silica-supported Cp2ZrCl2/MAO Catalyst Systems: Some Insights from the Kinetics of Polymerization, Active Center Studies, and Polymerization Tempera-ture,” J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 267-277.
    [37]    Wang W., Wang L., Wang J., Ma Zh., et al., “Study on Ethylene (co)Polymerization and its Kinetics Catalyzed by a Reversible Crosslinked Polystyrene-supported Metal-locene Catalyst,” J. Appl. Polym. Sci., 2005, 97, 1632-1636.
    [38]    Dashti A., Ramazani A., Hiraoka Y., Kim SY., et al., “Kinetic and Morphological Investigation on the Magnesium Ethoxide-based Ziegler Natta Catalyst for Propylene Polymerization Using Typical External Donors,” Macromol. Symp., 2009, 285, 52-57.
    [39]    Ahmadi M., Jamjah R., Nekoomanehs M., Zohuri G. H., et al., “Ziegler-Natta/ Metallocene Hybrid Catalyst for Ethylene Polymerization,” Macromol. React. Eng., 2007, 1, 604-610.
    [40]    Coates G. W. and Waymouth R. M., “Oscillating Stereocontrol: a Strategy for the Synthesis of Thermoplastic Elasto-meric Polypropylene,” Science., 1995, 267, 217-219.
    [41]    Brambilla R., Radtke C., Stedile F. C., Dos Santos J. H. Z., et al., “Metallocene Catalyst Supported on Silica–magnesia Xerogels for Ethylene Polymerization,” Appl. Catal. A: Gen., 2010, 382, 106-114.
    [42]    Lee H. W., Ahn S. H., and Park Y. H., “Copolymerization Characteristics of Homogeneous and In Situ Supported [(CH2)5(C5H4)2][(C9H7)ZrCl2]2 Catalyst,” J. Mol. Catal A: Chem., 2003, 194,19-28.
    [43]    Sano T., Hagimoto H., Sumiya S., Naito Y., et al., “Application of Porous Inorganic Materials to Adsorptive Separation of Methylalumoxane Used as Co-catalyst in Olefin Polymerization,” Micoropor. Mesopor. Mat., 2001, 44-45, 557-564.
    [44]    Kumkaew P., Wanke S. E., Praserthdam P., Danumah C., et al., “Rates and Product Properties of Polyethylene Produced by Copolymerization of 1-hexene and Ethylene in the Gas Phase with (n-BuCp)2ZrCl2 on Supports with Different Pore Sizes," J. Appl. Polym. Sci., 2003, 87, 1161-1177.