Design and Development of an Optical-Based Analyzer for Real-Time Moisture Detection in High-Pressure Natural Gas

Document Type : Research Paper

Authors

1 Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute

2 Pars Smart Sensors Engineering (MAHPA) ltd., University of Tehran Science and Technology Park, Tehran, Iran

10.22078/jpst.2025.5577.1961

Abstract

This study presents the design and development of an optical-based moisture dewpoint analyzer employing the chilled mirror technology for real-time dewpoint measurement at high-pressure gas streams. Moreover, the increasing demand for natural gas, along with the negative impact of moisture on energy efficiency and pipeline integrity, highlights the need for accurate moisture detection. Furthermore, the analyzer’s innovative design enables direct measurement of dewpoint temperature through the condensation of water vapor as nano-droplets on a cooled mirror surface, overcoming the limitations of traditional methods that operate most of the time at atmospheric pressures. We successfully reproduced our experimental results from the South Pars Gas Complex (SPGC) with HYSYS Process Simulation Software based on the actual gas composition model. This approach confirmed the accuracy of the experimental findings. Ultimately, the results indicate that this analyzer offers a robust, low-maintenance solution for monitoring moisture levels, which is crucial for preventing pipeline corrosion and gas hydrate formation. By addressing the limitations of existing Oxide-Aluminum (Ceramic-based) sensors, this technology enhances measurement accuracy and reliability, contributing significantly to advancements in natural gas quality monitoring.

Keywords


  1. May, R. D. (2003). System and method for detecting water vapor within natural gas, U.S. Patent No. 6,657,198.##
  2. Liang, F. Y., Ryvak, M., Sayeed, S., & Zhao, N. (2012). The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives. Chemistry Central Journal, 6(Suppl 1), S4. ##
  3. Johnson, N., Ume, C. S., & Nwosi, H. A. (2024). Simulating Water Vapor Removal in Glycol Gas Dehydration Mechanisms: A Comprehensive Analysis of Natural Gas and Dry Nitrogen. doi:10.20944/preprints202401.0989.v1##
  4. Shoaib, A. M., Ahmed, T. F., Gadallah, A. G., & Bhran, A. A. (2024). Analysis study of available alternatives for mitigation of aromatic hydrocarbon emissions from a glycol dehydration unit. International Journal of Chemical Engineering, 2024(1), 3643487. doi.org/10.1155/2024/3643487. ##
  5. Groysman, A. (2017). Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze a ochrana materialu, 61(3), 100. ##
  6. Yan, T., Xu, L. C., Zeng, Z. X., & Pan, W. G. (2024). Mechanism and anti-corrosion measures of carbon dioxide corrosion in CCUS: A review. Iscience, 27(1). ##
  7. Wang, Y., Li, J., Qu, C., Li, W., Pali, M. B., & Zheng, H. (2020). Research progress on corrosion of oil and gas field gathering pipeline in H2S-CO2-cl− system. In IOP Conference Series: Earth and Environmental Science 555(1), 012046. IOP Publishing. ##
  8. Al Madan, A., Hussein, A., & Akhtar, S. S. (2025). A review on internal corrosion of pipelines in the oil and gas industry due to hydrogen sulfide and the role of coatings as a solution. Corrosion Reviews, 43(2), 189-208. doi.org/10.1515/corrrev-2024-0114. ##
  9. Mychajiliw, B. (2002) Determination of water vapor & hydrocarbon dew point in gas. International School of Hydrocarbon Measurement, 507-510. ##
  10. Vakili, M., Koutník, P., & Kohout, J. (2024). Addressing hydrogen sulfide corrosion in oil and gas industries: a sustainable perspective. Sustainability, 16(4), 1661. doi.org/10.3390/su16041661.
  11. Goodwin, M. J., Musa, O. M., & Steed, J. W. (2015). Problems associated with sour gas in the oilfield industry and their solutions. Energy & Fuels, 29(8), 4667-4682. doi.org/10.1021/acs.energyfuels.5b00952. ##
  12. Gambelli, A. M., & Rossi, F. (2021). Hydrate formation as a method for natural gas separation into single compounds: a brief analysis of the process potential. Arabian Journal of Geosciences, 14(10), 846. ##
  13. Zarinabadi, S., & Samimi, A. (2012). Problems of hydrate formation in oil and gas pipes deals. Journal of American Science, 8(8), 1007-1010. ##
  14. Pei, J., Sui, X., Zhang, J., Wang, Z., Kong, Q., Liu, G., & Shen, J. (2024). Experimental study on hydrate blockage formation and decomposition in gas-dominated Fluctuating pipes. Geoenergy Science and Engineering, 242, 213286. doi.org/10.1016/j.geoen.2024.213286. ##
  15. Koh, C. A. (2002). Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 31(3), 157-167. doi.org/10.1039/B008672J. ##
  16. McKeogh G. Regional Product Manager, Moisture Measurement Technologies for Natural Gas. GEMeasurement & Control, Inc. ##
  17. Miller, S. (2016). Devices for field determination of H₂O in natural gas. In: Cook C, editor. SpectraSensors, Inc. ##
  18. Farahani, H., Wagiran, R., & Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors, 14(5), 7881-7939, doi.org/10.3390/s140507881. ##
  19. Tripathy, A., Pramanik, S., Manna, A., Bhuyan, S., Azrin Shah, N. F., Radzi, Z., & Abu Osman, N. A. (2016). Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors, 16(7), 1135, doi.org/10.3390/s16071135. ##
  20. Burgass, R., Chapoy, A., & de Oliveira Cavalcanti Filho, V. (2021). Development of a new method for measurement of the water dew/frost point of gas. Fluid Phase Equilibria, 530, 112873. ##
  21. Zhang, P., Zhou, L., Zeng, W., Xiong, G., Huang, H., Cai, L., Ye, H. and Qu, S. (2020). Hydrocarbon dew point measurement and model evaluation of synthetic and real natural gases. ACS omega, 5(15), 8463-8473. doi.org/10.1021/acsomega.9b03469. ##
  22. Louli, V., Pappa, G., Boukouvalas, C., Skouras, S., Solbraa, E., Christensen, K. O., & Voutsas, E. (2012). Measurement and prediction of dew point curves of natural gas mixtures. Fluid Phase Equilibria, 334, 1-9. ##
  23. https://www.zegaz.com/post/moisture-dew-point-vs-moisture-content-which-one-is-more-important. ##
  24. https://www.bakerhughes.com/panametrics/success-stories/measuring-moisture-pipeline?utm_source=chatgpt.com. ##
  25. Nie, J., & Liu, X. (2024). A review of dew point sensors: Recent advances and future development. Sensors and Actuators B: Chemical, 417, 136115. doi.org/10.1016/j.snb.2024.136115. ##
  26. Radičević, I., & Hudoklin, D. (2025). Empirical enhancement factors for trace moisture in nitrogen and argon: Bridging measurement principles. Sensors and Actuators B: Chemical, 435, 137617. doi.org/10.1016/j.snb.2025.137617. ##
  27. Sugidachi, T., Fujiwara, M., Shimizu, K., Ogino, S. Y., Suzuki, J., & Dirksen, R. J. (2025). Development of a Peltier-based chilled-mirror hygrometer, SKYDEW, for tropospheric and lower-stratospheric water vapor measurements. Atmospheric Measurement Techniques, 18(2), 509-531. ##
  28. ASTM D1142-95. Standard Test Method for Water Vapor Content of Gaseous Fuels by Measurement of Dew‐Point Temperature. Annual Book of Standards. 2021. ##
  29. Stokes, A. M., Summers, M. D., Instruments, M., & Way, L. (2012). Advances in optical techniques for moisture and hydrocarbon detection. ResearchGate Logo. ##
  30. Tao, J., Luo, Y., Wang, L., Cai, H., Sun, T., Song, J., Liu, H. and Gu, Y., (2016). An ultrahigh-accuracy miniature dew point sensor based on an integrated photonics platform. Scientific Reports, 6(1), p.29672. ##
  31. Ritsche, M. T. (2005). Chilled Mirror Dew Point Hygrometer (CM) Handbook (No. DOE/SC-ARM/TR-032). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States).Herring, J. (2008). Determination of Hydrocarbon Dew Point Measurement in Natural Gas. Michell Instruments, Inc. ##
  32. http://www.michell.com/downloads/whitepapers/Hydrocarbon-Dew-Point-Measurement-in-Natural-Gas.pdf. ##