Fabrication of Carbon Molecular Sieve with KOH Activated Olive Kernels for the Separation of Carbon Dioxide from Methane Gas

Document Type : Research Paper

Author

Research Institute of Petroleum Industry, (RIPI) Tehran, Iran

10.22078/jpst.2025.5614.1968

Abstract

In this study, the synthesis of adsorbents from agricultural residues, specifically olive kernels, was examined using chemical precipitation with potassium hydroxide (KOH) as the activating agent. The carbonization process was conducted under an inert gas atmosphere at three temperatures: 600°C, 700°C, and 800°C. Subsequently, a carbon molecular sieve (CMS) was developed by incorporating a binder into the activated carbon. The specific surface area of the produced samples was determined using the Brunauer-Emmett-Teller (BET) method, with measured values ranging from 360 m²/g to a maximum of 1103 m²/g. Moreover, the adsorption and separation characteristics of carbon dioxide (CO₂) and methane (CH₄) were evaluated for both activated carbon (AC) and carbon molecular sieves (CMS) across a pressure range of 1,200 to 1,500 kPa. Additionally, the obtained adsorption isotherms were analyzed using the Langmuir, Freundlich, and Sips models. Furthermore, a strong correlation was observed between the experimental data and the Sips isotherm, indicating enhanced selectivity for CO₂ over CH₄. Ultimately, among the investigated samples, the activated carbon subjected to carbonization at 800°C exhibited the highest CO₂ adsorption capacity, reaching 0.1699 g of CO₂ per gram of adsorbent, highlighting its potential efficacy for gas separation applications.

Keywords


  1. Sircar, S., Golden, T. C., & Rao, M. B. (1996). Activated carbon for gas separation and storage. Carbon, 34(1), 1-12. doi.org/10.1016/0008-6223(95)00128-X.##
  2. Djeridi, W., Ouederni, A., Wiersum, A. D., Llewellyn, P. L., & El Mir, L. (2013). High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Materials Letters, 99, 184-187. doi.org/10.1016/j.matlet.2013.03.044. ##
  3. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas production and applications in the sustainable energy transition. Journal of Energy, 2022(1), 8750221. doi.org/10.1155/2022/8750221. ##
  4. Wang, Q., Luo, J., Zhong, Z., & Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 4(1), 42-55. ##
  5. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., & Yu, X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews, 51, 521-532. doi.org/10.1016/j.rser.2015.06.029. ##
  6. Ngo, T. C. Q., Tran, T. K. N., Chau, H. D., & Hoang, B. N. (2023). The material potential and application of activated carbon from nut shells: Mini review. Materials Today: Proceedings. doi.org/10.1016/j.matpr.2023.03.511. ##
  7. Shabi, A. H., Prima Hardianto, Y., Shaheen Shah, S., Omar Al‐Qwairi, F., Mohamed, M. M., Nasiruzzaman Shaikh, M., Saeed Alzahrani, A. & Aziz, M. A. (2024). Advancements in olive‐derived carbon: preparation methods and sustainable applications. Chemistry–An Asian Journal, 19(8), e202400045. doi.org/10.1002/asia.202400045. ##
  8. Aimikhe, V. J., Anyebe, M. S., & Ibezim-Ezeani, M. (2024). Development of composite activated carbon from mango and almond seed shells for CO2 capture. Biomass Conversion and Biorefinery, 14(4), 4645-4659. org/10.1007/s13399-022-03665-w. ##
  9. Bartucci, S., Poselle Bonaventura, C., Pace, L., Conte, G., Desiderio, G., Mintova, S., Agostino, R.G. & Policicchio, A. (2024). Peach pit-activated carbons: effect of row material form and pyrolysis parameters on hydrogen adsorption storage. ACS Applied Engineering Materials, 2(4), 853-867. doi.org/10.1021/acsaenm.3c00733. ##
  10. Michałek, T., Wojtaszek, K., Małecki, S., Kornaus, K., Wandor, S., Druciarek, J., Fitzner, K. and Wojnicki, M., 2023. Recovery of Pd (II) ions from aqueous solutions using activated carbon obtained in a single-stage synthesis from cherry seeds. C, 9(2), p.46. doi.org/10.3390/c9020046. ##
  11. Aouay, F., Attia, A., Dammak, L., Ben Amar, R., & Deratani, A. (2024). Activated carbon prepared from waste coffee grounds: Characterization and adsorption properties of dyes. Materials, 17(13), 3078. doi.org/10.3390/ma17133078. ##
  12. Silva, M. C., Crespo, L. H., Cazetta, A. L., Silva, T. L., Spessato, L., & Almeida, V. C. (2024). Activated carbon fibers of high surface area from corn husk: Mono and multicomponent adsorption studies of Pb2+ and Cu2+ ions from aqueous solution. Journal of Molecular Liquids, 405, 124919. doi.org/10.1016/j.molliq.2024.124919. ##
  13. Metyouy, K., Benkirane, L., Sánchez, M. E., Cara-Jiménez, J., Plakas, K. V., & Chafik, T. (2024). Valorization of agricultural olive waste as an activated carbon adsorbent for the remediation of water sources contaminated with pharmaceuticals. Sustainable Chemistry for the Environment, 6, 100110. doi.org/10.1016/j.scenv.2024.100110. ##
  14. Monteagudo, J. M., Durán, A., Alonso, M., & Stoica, A. I. (2025). Investigation of effectiveness of KOH-activated olive pomace biochar for efficient direct air capture of CO2. Separation and Purification Technology, 352, 127997. doi.org/10.1016/j.seppur.2024.127997. ##
  15. Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H.W., Kim, S., Kwon, J.H., Tsang, D.C. & Ok, Y. S. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119, 109582. doi.org/10.1016/j.rser.2019.109582. ##
  16. Williams, N. E., Oba, O. A., & Aydinlik, N. P. (2022). Modification, production, and methods of KOH‐activated carbon. ChemBioEng Reviews, 9(2), 164-189. doi.org/10.1002/cben.202100030. ##
  17. Ubago-Pérez, R., Carrasco-Marín, F., Fairén-Jiménez, D., & Moreno-Castilla, C. (2006). Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous and mesoporous materials, 92(1-3), 64-70. doi.org/10.1016/j.micromeso.2006.01.002. ##
  18. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. ##
  19. Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D., & Linares-Solano, A. (2009). Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 124(1-3), 110-116. doi.org/10.1016/j.micromeso.2009.04.041##.
  20. Hanaor, D. A., Ghadiri, M., Chrzanowski, W., & Gan, Y. (2014). Scalable surface area characterization by electrokinetic analysis of complex anion adsorption. Langmuir, 30(50), 15143-15152. doi.org/10.1021/la503581e. ##
  21. Mousavi, Z., & Bozorgzadeh, H. R. (2017). Preparation of carbon molecular sieves from pistachio shell and walnut shell for kinetic separation of carbon monoxide, hydrogen and methane. ##
  22. Walton, K. S., & Sholl, D. S. (2015). Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE Journal, 61(9), 2757-2762. doi.org/10.1002/aic.14878. ##
  23. Zhang, P., & Wang, L. (2010). Extended Langmuir equation for correlating multilayer adsorption equilibrium data. Separation and Purification Technology, 70(3), 367-371. doi.org/10.1016/j.seppur.2009.10.007.
  24. Swenson, H., & Stadie, N. P. (2019). Langmuir’s theory of adsorption: A centennial review. Langmuir, 35(16), 5409-5426. doi.org/10.1021/acs.langmuir.9b00154. ##