Evaluation of the Potential of Natural Gas Sweetening by Using Imidazolium Ionic Liquid [bmim][NTf2] based on PC-SAFT Equation of State

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Isfahan University of Technology, Iran

2 Gas Refining Technology Group, Gas Research Division and Gas Processing Institute (GPI), Research Institute of Petroleum Industry (RIPI), 1485733111 Tehran, Iran

10.22078/jpst.2025.5632.1971

Abstract

In the present study, for the first time, the potential of gas sweetening of Iranian gas composition by using an imidazolium-based ionic liquid solvent called 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][NTf2] has been evaluated. The results are compared with natural gas sweetening using an amine-based solvent. The PC-SAFT equation of state was used as a thermodynamic model in Aspen Plus software version 10. Since the thermophysical properties of the ionic liquid are not available in the software, and these properties for pure and multicomponent systems are in vital demand, all the necessary properties are correlated to PC-SAFT EoS as well as related thermophysical properties. The gas sweetening process is simulated for both ionic liquid and amine-based solvents, and the results are compared. The results show that to meet the sweet gas pipeline specification (4 ppm H2S and 2% CO2), the energy consumption of the ionic liquid-based process is much higher than that of the MDEA-based solvent. This result indicates that ionic-based solvents ([bmim][NTf2]) are not suitable for gas sweetening due to their lack of desirable properties, including low vapor pressure, high thermal stability, high solubility, and tunability.

Keywords


  1. Mohr, S. H., & Evans, G. M. (2011). Long term forecasting of natural gas production. Energy Policy, 39(9), 5550-5560. doi.org/10.1016/j.enpol.2011.04.066.##
  2. Qadeer K., Qyyum M.A., Lee M. (2018), Krill-herd-based investigation for energy saving opportunities in offshore liquefied, Natural Gas Processes Industrial & Engineering Chemistry Research, 57,  14162-14172,

doi.org/10.1021/acs.iecr.8b02616. ##

  1. Adhi T.P., Situmorang Y.A., Winoto H.P., Ariono D., Septiana D., Imanuela P., Indarto A. (2021), H2S–CO2 gas separation with ionic liquids on low ratio of H2S/CO2, Heliyon, 7,  e08611, doi.org/10.1016/j.heliyon.2021.e08611. ##
  2. Khabazipour, M., & Anbia, M. (2019). Removal of hydrogen sulfide from gas streams using porous materials: a review. Industrial & Engineering Chemistry Research, 58(49), 22133-22164, doi.org/10.1021/acs.iecr.9b03800. ##
  3. Rufford, T. E., Smart, S., Watson, G. C., Graham, B. F., Boxall, J., Da Costa, J. D., & May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94, 123-154, doi.org/10.1016/j.petrol.2012.06.016. ##
  4. Scholes, C. A., Stevens, G. W., & Kentish, S. E. (2012). Membrane gas separation applications in natural gas processing. Fuel, 96, 15-28, doi.org/10.1016/j.fuel.2011.12.074. ##
  5. Kidnay, A. J., Parrish, W. R., & McCartney, D. G. (2019). Fundamentals of natural gas processing. CRC press, doi.org/10.1201/b14397. ##
  6. Rochelle, G. T. (2009). Amine scrubbing for CO2 Science, 325(5948), 1652-1654, doi.org/10.1126/science.1176731. ##
  7. Babamohammadi, S., Shamiri, A., & Aroua, M. K. (2015). A review of CO2 capture by absorption in ionic liquid-based solvents. Reviews in Chemical Engineering, 31(4), 383-412, doi.org/doi:10.1515/revce-2014-0032. ##
  8. Huang B., Xu S., Gao S., Liu L., Tao J., Niu H., Cai M., Cheng J. (2010), Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station, Journal of Applied Energy, 87,  3347-3354, doi.org/10.1016/j.apenergy.2010.03.007. ##
  9. Kazmi B., Haider J., Qyyum M.A., Saeed S., Kazmi M.R., Lee M. (2019), Heating load depreciation in the solvent-regeneration step of absorption-based acid gas removal using an ionic liquid with an imidazolium-based cation International, Journal of Greenhouse Gas Control, 87,  89-99, doi.org/10.1016/j.ijggc.2019.05.007. ##
  10. Ng S., Atilhan M., Karadas F., Jacquemin J., Thompson J., Rooney D., Khraisheh M., (2012), Applications of Ionic Liquids in Gas Processing in: Aroussi A., F. Benyahia, (Eds.), Proceedings of the 3rd Gas Processing Symposium, Elsevier, Oxford, 133-138, doi.org/10.1016/B978-0-444-59496-9.50021-7##
  11. Seddon K.R. (1997), Ionic Liquids for Clean Technology, Journal of Chemical Technology & Biotechnology, 68,  351-356, doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4. ##
  12. Brennecke J.F., Gurkan B.E. (2010), Ionic Liquids for CO2 Capture and Emission Reduction, The Journal of Physical Chemistry Letters, 1,  3459-3464, doi.org/10.1021/jz1014828. ##
  13. Zhang X., Zhang X., Dong H., Zhao Z., Zhang S., Huang Y. (2012), Carbon capture with ionic liquids: overview and progress Energy & Environmental Science, 5,  6668-6681, doi.org/10.1039/c2ee21152a. ##
  14. Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F. (2005), Anion Effects on Gas Solubility in Ionic Liquids The Journal of Physical Chemistry B, 109, 6366-6374, doi.org/10.1021/jp046404l. ##
  15. Makino T., Kanakubo M., Masuda Y., Mukaiyama H. (2014), Physical and CO2-Absorption Properties of Imidazolium Ionic Liquids with Tetracyanoborate and Bis(trifluoromethanesulfonyl)amide Anions Journal of Solution Chemistry, 43,  1601-1613, doi.org/10.1007/s10953-014-0232-x. ##
  16. Safarov J., Hamidova R., Stephan M., Schmotz N., Kul I., Shahverdiyev A., Hassel E. (2013), Carbon dioxide solubility in 1-butyl-3-methylimidazolium-bis(trifluormethylsulfonyl)imide over a wide range of temperatures and pressures, The Journal of Chemical Thermodynamics, 67,  181-189, doi.org/10.1016/j.jct.2013.08.008. ##
  17. Song Z., Shi H., Zhang X., Zhou T. (2020), Prediction of CO2 solubility in ionic liquids using machine learning methods, J. of Chemical Engineering Science, 223, 115752, doi.org/10.1016/j.ces.2020.115752. ##
  18. Chen Y., Zhang S., Yuan X., Zhang Y., Zhang X., Dai W., Mori R. (2006), Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids, Journal of Thermochimica Acta, 441, 42-44, doi.org/10.1016/j.tca.2005.11.023. ##
  19. Kumełan J., Pérez-Salado Kamps Á., Tuma D., Maurer G. (2006), Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6], Journal of Chemical & Engineering Data, 51, 1802-1807, doi.org/10.1021/je060190e. ##
  20. Jalili A.H., Mehrabi M., Zoghi A.T., Shokouhi M., Taheri S.A. (2017), Solubility of carbon dioxide and hydrogen sulfide in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate, J. of Fluid Phase Equilibria, 453,  1-12, doi.org/10.1016/j.fluid.2017.09.003. ##
  21. Jalili A.H., Rahmati-Rostami M., Ghotbi C., Hosseini-Jenab M., Ahmadi A.N. (2009), Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N], Journal of Chemical & Engineering Data, 54, 1844-1849, doi.org/10.1021/je8009495. ##
  22. Jalili A.H., Safavi M., Ghotbi C., Mehdizadeh A., Hosseini-Jenab M., Taghikhani V. (2012), Solubility of CO2, H2S, and Their Mixture in the Ionic Liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide, The Journal of Physical Chemistry B, 116, 2758-2774, doi.org/10.1021/jp2075572. ##
  23. Shiflett M.B., Drew D.W., Cantini R.A., Yokozeki A. (2010), Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate, Journal of Energy & Fuels, 24, 5781-5789, doi.org/10.1021/ef100868a. ##
  24. Barbosa L.C., Araújo O.d.Q.F., de Medeiros J.L. (2019), Carbon capture and adjustment of water and hydrocarbon dew-points via absorption with ionic liquid [Bmim][NTf2] in offshore processing of CO2-rich natural gas Journal of Natural Gas Science and Engineering, 66,  26-41, doi.org/10.1016/j.jngse.2019.03.014. ##
  25. Liu X., Huang Y., Zhao Y., Gani R., Zhang X., Zhang S. (2016), Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas, J. of Industrial & Engineering Chemistry Research, 55, 5931-5944, doi.org/10.1021/acs.iecr.6b00029. ##
  26. Anthony J.L., (2004), Gas solubilities in ionic liquids: Experimental measurements and applications, University of Notre Dame. ##
  27. Aki S.N.V.K., Mellein B.R., Saurer E.M., Brennecke J.F. (2004), High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, The Journal of Physical Chemistry B, 108,  20355-20365, doi.org/10.1021/jp046895. ##
  28. Zoghi A., Feyzi F., Dehghani M. (2012), Modeling CO2 Solubility in Aqueous N-methyldiethanolamine Solution by Electrolyte Modified Peng−Robinson Plus Association Equation of State, Journal of Industrial & Engineering Chemistry Research, 51, 9875−9885, doi.org/10.1021/ie2026053. ##
  29. Gross J., Sadowski G. (2001), Perturbed-Chain SAFT:  An Equation of State Based on a Perturbation Theory for Chain Molecules, Journal of Industrial & Engineering Chemistry Research, 40,  1244-1260, doi.org/10.1021/ie0003887. ##
  30. Al-fnaish H., Lue L. (2017), Modelling the solubility of H2S and CO2 in ionic liquids using PC-SAFT equation of state, J. of Fluid Phase Equilibria, 450,  30-41, doi.org/10.1016/j.fluid.2017.07.008. ##
  31. Gross J., Sadowski G. (2002), Application of the Perturbed-Chain SAFT Equation of State to Associating Systems, Journal of Industrial & Engineering Chemistry Research, 41, 5510-5515, doi.org/10.1021/ie010954d. ##
  32. Chen Y., Mutelet F., Jaubert J.-N. (2012), Modeling the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with the PC-SAFT Equation of State, The Journal of Physical Chemistry B, 116, 14375-14388, doi.org/10.1021/jp309944t. ##
  33. Rahmati-Rostami M., Behzadi B., Ghotbi C. (2011), Thermodynamic modeling of hydrogen sulfide solubility in ionic liquids using modified SAFT-VR and PC-SAFT equations of state, Journal of Fluid Phase Equilibria, 309, 179-189, doi.org/10.1016/j.fluid.2011.07.013. ##
  34. Baramaki Z., Arab Aboosadi Z., Esfandiari N. (2018), Fluid phase equilibrium prediction of acid gas solubility in imidazolium-based ionic liquids with the Peng-Robinson and the PC-SAFT models, Journal of Petroleum Science and Technology, 37, 1-8, doi.org/10.1080/10916466.2018.1511593. ##
  35. Aghaie M., Rezaei N., Zendehboudi S. (2019), Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems by extended PR and PC-SAFT EOSs: Carbon capture implication, Journal of Molecular Liquids, 275,  323-337, doi.org/10.1016/j.molliq.2018.11.038. ##
  36. Hamidova R., Kul I., Safarov J., Shahverdiyev A., Hassel E. (2015), thermophysical properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at high temperatures and pressures Brazilian, Journal of Chemical Engineering, 32, doi.org/10.1590/0104-6632.20150321s00003120. ##
  37. Valderrama J.O., Robles P.A. (2007), Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids, J. of Industrial & Engineering Chemistry Research, 46,  1338-1344, doi.org/10.1021/ie0603058. ##
  38. Valderrama J.O., Sanga W.W., Lazzús J.A. (2008), Critical Properties, Normal Boiling Temperature, and Acentric Factor of Another 200 Ionic Liquids, J. of Industrial & Engineering Chemistry Research,  47,  1318-1330, doi.org/10.1021/ie071055d. ##
  39. Lydersen A., Greenkorn R.A., Hougen O.A. (1955), Generalized thermodynamic properties of pure fluids, AIChE ,doi.org/10.1002/aic.690020330. ##
  40. Joback K.G., Reid R.C. (1987), Estimation of pure-component properties from group-contributions, Taylor & Francis, doi.org/10.1080/00986448708960487. ##
  41. Ge R., Hardacre C., Nancarrow P., Rooney D.W. (2007), Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K, Journal of Chemical & Engineering Data, 52,  1819-1823, doi.org/10.1021/je700176d. ##
  42. Tariq M., Serro A.P., Mata J.L., Saramago B., Esperança J.M.S.S., Canongia Lopes J.N., Rebelo L.P.N. (2010), High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids, J. of Fluid Phase Equilibria,  294,  131-138, doi.org/10.1016/j.fluid.2010.02.020. ##
  43. Martins M., Sharma G., Pinho S., Gardas R., Coutinho J., Carvalho P. (2020), Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture, J. of Fluid Phase Equilibria,  518,  112621, doi.org/10.1016/j.fluid.2020.112621. ##
  44. Zaitsau D.H., Kabo G.J., Strechan A.A., Paulechka Y.U., Tschersich A., Verevkin S.P., Heintz A. (2006), Experimental Vapor Pressures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids, The Journal of Physical Chemistry A, 110,  7303-7306, doi.org/10.1021/jp060896f. ##
  45. Paulechka Y.U., Kabo G.J., Emel’yanenko V.N. (2008), Structure, Conformations, Vibrations, and Ideal-Gas Properties of 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide Ionic Pairs and Constituent Ions, The Journal of Physical Chemistry B, 112, 15708-15717, doi.org/10.1021/jp804607n. ##
  46. Sreedhar I., Nahar T., Venugopal A., Srinivas B. (2017), Carbon capture by absorption – Path covered and ahead Renewable and Sustainable Energy Reviews, 76,  1080-1107, doi.org/10.1016/j.rser.2017.03.109. ##
  47. Raeissi S., Peters C.J. (2010), High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Journal of Fluid Phase Equilibria, 294,  67-71, doi.org/10.1016/j.fluid.2010.03.021. ##
  48. Bourland K.R., Morales-Collazo O., Brennecke J.F. (2022), Inverse Gas Chromatography as a Screening Technique for Henry’s Law Constants of Gases in Ionic Liquids, Journal of Chemical & Engineering Data, 67,  385-392, doi.org/10.1021/acs.jced.1c00838. ##
  49. Zhang Y., Zhang T., Gan P., Li H., Zhang M., Jin K., Tang S. (2015), Solubility of Isobutane in Ionic Liquids [BMIm][PF6], [BMIm][BF4], and [BMIm][Tf2N], Journal of Chemical & Engineering Data, 60,  1706-1714, doi.org/10.1021/je501083d. ##
  50. Lee B.-C., Outcalt S.L. (2006), Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Journal of Chemical & Engineering Data, 51, 892-897, doi.org/10.1021/je050357o. ##