Study of the Influence of Semi-Porous Baffles on the Three-Phase Separation Efficiency in a Horizontal Separator Vessel via CFD

Document Type : Research Paper

Authors

1 Chemical Engineering, UESC, Rodovia Jorge Amado, Ilhéus, BA, Brazil.

2 Process Engineering, UFCG, Aprigio Veloso, 882, Campina Grande, PB, Brazil.

3 Sugar and Alcohol Technology, UFPB, Rua dos Escoteiros, s/n, João Pessoa, PB, Brazil.

Abstract

Horizontal separator vessels exhibit better phase separation efficiencies when fluids flow at lower velocities, favoring the sedimentation process. The optimized determination of internal devices, such as baffles, can reduce fluid velocity from the inlet to the separation region. This research aimed to evaluate the impact of semi-perforated baffles on flow dynamics and the separation efficiency of gas, oil, and water in a three-phase horizontal separator vessel. Moreover, to achieve this goal, a base geometry was adapted. Furthermore, two configurations of semi-perforated baffles were analyzed, varying their distance from the inlet, height relative to the vessel bottom, and vertical length. In addition, computational fluid dynamics was used to obtain numerical results. Moreover, the multiphase flow was modeled using the VOF method in conjunction with the standard k-epsilon turbulence model. Also, the results indicated that the insertion of baffles contributed to reducing the velocity of the inlet fluids. Ultimately, among the analyzed geometric arrangements, it can be concluded that the three-phase horizontal separator with a semi-perforated baffle at position P1 exhibited a more uniform three-phase flow and better liquid/gas (90.03%) and oil/water (100%) separation efficiencies when compared to the other studied geometries.

Keywords


  1. Stewart, M., & Arnold, K. (2008). Gas-liquid and Liquid-liquid Separators. Gulf Professional Publishing.##
  2. Bothamley, M. (2013). Gas/liquid separators: quantifying separation performance-part 1. Oil and Gas Facilities, 2(04), 21-29. doi.org/10.2118/0813-0021-OG. ##
  3. Bothamley, M. (2013). Gas/liquids separators: Quantifying separation performance-part 3. Oil and Gas Facilities, 2(06), 34-47, doi.org/10.2118/1013-0035-OGF. ##
  4. Le, T. T., Ngo, S. I., Lim, Y. I., Park, C. K., Lee, B. D., Kim, B. G., & Lim, D. H. (2018). Three-phase Eulerian computational fluid dynamics of air–water–oil separator under off-shore operation. Journal of Petroleum Science and Engineering, 171, 731-747, doi.org/10.1016/j.petrol.2018.08.001. ##
  5. Oshinowo, L. M., & Vilagines, R. D. (2020). Modeling of oil–water separation efficiency in three-phase separators: Effect of emulsion rheology and droplet size distribution. Chemical engineering research and design, 159, 278-290, doi.org/10.1016/j.cherd.2020.02.022. ##
  6. Shi, Y., Chen, J., & Meng, H. (2022). Experimental study on the performance of an electric field enhanced separator for crude oil production fluid. Journal of Petroleum Science and Engineering, 212, 110315, doi.org/10.1016/j.petrol.2022.110315. ##
  7. Rocco, M. V., Langè, S., Pigoli, L., Colombo, E., & Pellegrini, L. A. (2019). Assessing the energy intensity of alternative chemical and cryogenic natural gas purification processes in LNG production. Journal of Cleaner Production, 208, 827-840, doi.org/10.1016/B978-0-7506-7776-9.X5000-3. ##
  8. McCleney, A. B., Owston, R. A., Green, S. T., Viana, F., & Nelson, S. M. (2017, May). Modeling of a Full-Scale Horizontal Liquid-Liquid Separator under Conditions of Varying Flow Rate, Water Cut, and Viscosity with Experimental Validation. In Offshore Technology Conference (p. D012S057R004). OTC, doi.org/10.4043/27762-MS. ##
  9. McCleney, A. B., Green, S. T., & Owston, R. A. (2018). Validation of multiphase modeling of a horizontal liquid-liquid separator in fluent and STAR-CCM+. In Offshore Technology Conference (p. D031S035R005). OTC., doi.org/10.4043/28763-MS. ##
  10. Ghaffarkhah, A., Shahrabi, M. A., Moraveji, M. K., & Eslami, H. (2017). Application of CFD for designing conventional three phase oilfield separator. Egyptian journal of petroleum, 26(2), 413-420, doi.org/10.1016/j.ejpe.2016.06.003. ##
  11. Ghaffarkhah, A., Shahrabi, M. A., & Moraveji, M. K. (2018). 3D computational-fluid-dynamics modeling of horizontal three-phase separators: an approach for estimating the optimal dimensions. SPE Production & Operations, 33(04), 879-895, doi.org/10.2118/189990-PA. ##
  12. Ghaffarkhah, A., Dijvejin, Z. A., Shahrabi, M. A., Moraveji, M. K., & Mostofi, M. (2019). Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation. Journal of petroleum exploration and production technology, 9, 353-382, doi.org/10.1007/s13202-018-0460-5. ##
  13. Yu, P., Liu, S., Wang, Y., Lin, W., Xiao, Z., & Wang, C. (2012). Study on internal flow field of the three-phase separator with different entrance components. Procedia Engineering, 31, 145-149, doi.org/10.1016/j.proeng.2012.01.1004. ##
  14. Oshinowo, L., Elsaadawy, E., & Vilagines, R. (2015). CFD modeling of oil-water separation efficiency in three-phase separators. In Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. SINTEF Academic Press. ISSN 2387-4295. ##
  15. Oruç, M., & Yayla, S. (2022). Experimental investigation of oil-in water separation using corrugated plates and optimization of separation system. Separation Science and Technology, 57(5), 788-800, doi.org/10.1080/01496395.2021.1939377. ##
  16. Oruç, M., & Yayla, S. (2023). Experimental investigation and optimization analysis of a designed wastewater treatment system. Journal of Environmental Engineering, 149(7), 05023005, doi.org/10.1061/JOEEDU.EEENG-7318. ##
  17. Efendioglu, A., Mendez, J., & Turkoglu, H. (2014). The numerical analysis of the flow and separation efficiency of a two-phase horizontal oil-gas separator with an inlet diverter and perforated plates. Advances in Fluid Mechanics, 10, 121-133. doi:10.2495/AFM140121 . ##
  18. Yayla, S., Kamal, K., Bayraktar, S. and Oruc, M. (2017) Two Phase Flow Separation in A Horizontal Separator by Inlet Diverter Plate in Oilfield Industries, International Journal of Mechanical and Production Engineering, 5, 7-10. ISSN: 2320-2092. ##
  19. Yayla, S. E. D. A. T., Kamal, K., & Bayraktar, S. (2019). Numerical analysis of a two-phase flow (oil and gas) in a horizontal separator used in petroleum projects. Journal of Applied Fluid Mechanics, 12(4), 1037-1045, doi.org/10.29252/jafm.12.04.29318. ##
  20. Liu, S., Zhang, J., Wang, L. S., & Xu, J. Y. (2020). Separation mechanism and influential factor study on vane-type-associated petroleum gas separator. Separation and Purification Technology, 250, 117274, doi.org/10.1016/j.seppur.2020.117274. ##
  21. Kharoua, N., Khezzar, L., & Saadawi, H. (2012, November). Using CFD to model the performance of retrofit production separators in Abu Dhabi. In Abu Dhabi International Petroleum Exhibition and Conference (pp. SPE-161521). SPE., doi.org/10.2118/161521-MS. ##
  22. Kharoua, N., Khezzar, L., & Saadawi, H. (2013, July). CFD simulation of three-phase separator: effects of size distribution. In Fluids Engineering Division Summer Meeting (Vol. 55560, p. V01CT17A013). American Society of Mechanical Engineers, doi.org/10.1115/FEDSM2013-16322. ##
  23. Kharoua, N., Khezzar, L. and Saadawi H. (2013). American Journal f Fluid Dynamics, 1, 101-118, doi.org/10.5923/j.ajfd.20130304.03. ##
  24. Kharoua, N., Khezzar, L., & Saadawi, H. (2012). Application of CFD to debottleneck production separators in a major oil field in the Middle East. In SPE Annual Technical Conference and Exhibition? (pp. SPE-158201). SPE, doi.org/10.2118/158201-MS. ##
  25. Versteeg, H. K. and Malalasekera, W. (1995). Longman Scientific & Technical,. ISBN: 978-0-13-127498-3. ##
  26. Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). ##