Interfacial Tension in Asphaltenic Crude Oil – Brine Systems: Robust Predictive Tools Based on Intelligent Approaches

Document Type : Research Paper

Authors

Department of Chemical and Petroleum Engineering, Faculty of Engineering, Ilam University, Ilam, Iran

Abstract

Accurate interfacial tension (IFT) determination between crude oil and brines is crucial in enhanced oil recovery (EOR) processes. However, the available IFT models only apply to systems containing pure hydrocarbons and saline waters. The current study aims to design comprehensive predictive tools for the IFT between asphaltenic crude oils and various brines. Hence, 339 relevant experimental data covering an extensive range of operating conditions were gathered from the literature, and the most effective input variables were determined through Spearman’s rank coefficient. Then, the experimental data were utilized to train the smart soft-computing approaches, i.e., radial basis function (RBF), multilayer perceptron (MLP), and Gaussian process regression (GPR). Although all novel predictive tools presented excellent results, the one designed based on the GPR method was recognized as the most reliable model with an average absolute relative error (AARE) of 0.67% and an R2 value of 99.63% in the testing stage. Additionally, it estimated most of the IFT data with relative errors below 0.10%. On the other hand, the validity of the gathered databank was confirmed through the leverage method. The influences of pressure, temperature, salinity, and structural characteristics of salts on the IFT were discussed in detail, and the proposed models favorably described the physical trends. Eventually, a sensitivity analysis was carried out based on the GPR model to clarify the order of significance of factors in controlling the crude oil-brine IFT.

Keywords


  1. Niroomand-Toomaj, E., Etemadi, A., & Shokrollahi, A. (2017). Radial basis function modeling approach to prognosticate the interfacial tension CO2/Aquifer Brine. Journal of Molecular Liquids, 238, 540-544. doi.org/10.1016/j.molliq.2017.04.135.##
  2. Jiao, F., Al Ghafri, S. Z., Seneviratne, K. N., Akhfash, M., Hughes, T. J., Johns, M. L., & May, E. F. (2022). Interfacial tension measurements of methane plus propane binary and methane plus propane plus n-heptane ternary mixtures at low temperatures. Journal of Chemical Thermodynamics, 171. doi.org/10.1016/j.jct.2022.106786. ##
  3. Zhang, C., & Wang, M. (2023). CO2/brine interfacial tension for geological CO2 storage: A systematic review. Journal of Petroleum Science and Engineering, 220, 111154. doi.org/10.1016/j.petrol.2022.111154. ##
  4. Barati-Harooni, A., Soleymanzadeh, A., Tatar, A., Najafi-Marghmaleki, A., Samadi, S. J., Yari, A., Roushani B., & Mohammadi, A. H. (2016). Experimental and modeling studies on the effects of temperature, pressure and brine salinity on interfacial tension in live oil-brine systems. Journal of Molecular Liquids, 219, 985-993. doi.org/10.1016/j.molliq.2016.04.013. ##
  5. Hosseinzadeh Dehaghani, Y., Assareh, M., & Feyzi, F. (2022). Simultaneous prediction of equilibrium, interfacial, and transport properties of CO2-brine systems using molecular dynamics simulation: applications to CO2 storage. Industrial & Engineering Chemistry Research, 61(41), 15390-15406. doi.org/10.1021/acs.iecr.2c02249. ##
  6. Lim, S. S. S., Elochukwu, H., Nandong, J., Bennour, Z., & Hamid, M. A. (2023). A review on the mechanisms of low salinity water/surfactant/nanoparticles and the potential synergistic application for c-EOR. Petroleum Research, 8(3), 324-337. doi.org/10.1016/j.ptlrs.2023.02.001. ##
  7. Sheng J. J. (2020) EOR mechanisms of wettability alteration and its comparison with IFT, Enhanc. Oil Recover. Shale Tight Reserv. 213–278. doi.org/10.1016/b978-0-12-815905-7.00009-8. ##
  8. Safaei-Farouji, M., Thanh, H. V., Dashtgoli, D. S., Yasin, Q., Radwan, A. E., Ashraf, U., & Lee, K. K. (2022). Application of robust intelligent schemes for accurate modelling interfacial tension of CO2 brine systems: Implications for structural CO2 trapping. Fuel, 319, 123821. doi.org/10.1016/j.fuel.2022.123821. ##
  9. Mokhtari, R., Ayatollahi, S., & Fatemi, M. (2019). Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. Journal of Petroleum Science and Engineering, 182, 106194. doi.org/10.1016/j.petrol.2019.106194. ##
  10. eng X., Tariq Z., Murtaza M., Patil S., Mahmoud M., Kamal M.S. (2021). Relative contribution of wettability Alteration and interfacial tension reduction in EOR: A critical review. Journal of Molecular Liquids, 325, 115175. doi.org/10.1016/j.molliq.2020.115175. ##
  11. Su, C. H., & Chen, L. J. (2016). Phase behavior and interfacial tensions in the ternary systems water+ dodecane+ propylene glycol n-propyl ether and water+ tetradecane+ propylene glycol n-propyl ether. Journal of the Taiwan Institute of Chemical Engineers, 68, 74-79. doi.org/10.1016/j.jtice.2016.09.019. ##
  12. Lashkarbolooki, M., Riazi, M., & Ayatollahi, S. (2017). Effect of CO2 and natural surfactant of crude oil on the dynamic interfacial tensions during carbonated water flooding: experimental and modeling investigation. Journal of Petroleum Science and Engineering, 159, 58-67. doi.org/10.1016/j.petrol.2017.09.023. ##
  13. Shang, Q., Xia, S., Cui, G., Tang, B., & Ma, P. (2018). Experiment and correlation of the equilibrium interfacial tension for paraffin+ CO2 modified with ethanol. The Journal of Chemical Thermodynamics, 116, 206-212. doi.org/10.1016/j.jct.2017.08.031. ##
  14. Zhang, K., Georgiadis, A., & Trusler, J. M. (2022). Measurements and interpretation of crude Oil-Water/Brine dynamic interfacial tension at subsurface representative conditions. Fuel, 315, 123266. doi.org/10.1016/j.fuel.2022.123266. ##
  15. Zandahvifard, M. J., Elhambakhsh, A., Ghasemi, M. N., Esmaeilzadeh, F., Parsaei, R., Keshavarz, P., & Wang, X. (2021). Effect of modified Fe3O4 magnetic NPs on the absorption capacity of CO2 in water, wettability alteration of carbonate rock surface, and water–oil interfacial tension for oilfield applications. Industrial & Engineering Chemistry Research, 60(8), 3421-3434. doi.org/10.1021/acs.iecr.0c04857. ##
  16. Choudhary, N., Anwari Che Ruslan, M. F., Narayanan Nair, A. K., Qiao, R., & Sun, S. (2021). Bulk and interfacial properties of the decane+ brine system in the presence of carbon dioxide, methane, and their mixture. Industrial & Engineering Chemistry Research, 60(30), 11525-11534. doi.org/10.1021/acs.iecr.1c01607. ##
  17. Liu, J., Liu, S., Zhong, L., Yuan, S., Wang, Q., & Wei, C. (2023). Study on the emulsification characteristics of heavy oil during chemical flooding. Physics of Fluids, 35(5). doi.org/10.1063/5.0152109. ##
  18. Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. Journal of Petroleum Science and Engineering, 196, 107862. doi.org/10.1016/j.petrol.2020.107862. ##
  19. Behvandi, R., & Mirzaie, M. (2022). A novel correlation for modeling interfacial tension in binary mixtures of CH, CO, and N+ normal alkanes systems: Application to gas injection EOR process. Fuel, 325, 124622. doi.org/10.1016/j.fuel.2022.124622. ##
  20. Talebian, S. H., Fahimifar, A., & Heidari, A. (2021). Review of enhanced oil recovery decision making in complex carbonate reservoirs: Fluid flow and geomechanics mechanisms. Journal of Computational Applied Mechanics, 52(2), 350-365. doi.org/10.22059/jcamech.2021.318511.596. ##
  21. Negi, G. S., Sircar, A., & Pandian, S. (2023). Engineering the rheology and IFT behavior of mixed formulations of anionic and non-ionic surfactants with added silica nanoparticles. Materials Today: Proceedings, 77, 223-233. doi.org/10.1016/j.matpr.2022.11.266. ##
  22. Lins, I. E., Santana, G. P., Costa, G. M., & de Melo, S. A. V. (2022). New correlations for interfacial tension of CO2-water-electrolyte systems at high pressure. Fluid Phase Equilibria, 555, 113354. doi.org/10.1016/j.fluid.2021.113354. ##
  23. Najimi, S., Nowrouzi, I., Manshad, A. K., Farsangi, M. H., Hezave, A. Z., Ali, J. A., Keshavarz A., & Mohammadi, A. H. (2019). Investigating the effect of [C 8Py][Cl] and [C18Py][Cl] ionic liquids on the water/oil interfacial tension by considering Taguchi method. Journal of Petroleum Exploration and Production Technology, 9, 2933-2941. doi.org/10.1007/s13202-019-0688-8. ##
  24. Jerauld, G. R., & Kazemi, A. (2022). An improved simple correlation for accurate estimation of CO2-Brine interfacial tension at reservoir conditions. Journal of Petroleum Science and Engineering, 208, 109537. doi.org/10.1016/j.petrol.2021.109537. ##
  25. Li, N., Zhang, C., Ma, Q., Sun, Z., Chen, Y., Jia, S., Chen G., Sun C., & Yang, L. (2019). Measurements and modeling of interfacial tension for (CO2+ n-alkyl benzene) binary mixtures. The Journal of Supercritical Fluids, 154, 104625. doi.org/10.1016/j.supflu.2019.104625. ##
  26. Li, N., Zhang, C., Ma, Q., Sun, Z., Chen, Y., Jia, S., Chen G., Sun C. & Yang, L. (2019). Measurements and modeling of interfacial tension for (CO2+ n-alkyl benzene) binary mixtures. The Journal of Supercritical Fluids, 154, 104625. doi.org/10.1016/j.supflu.2019.104625. ##
  27. Asadzadeh, N., Ahmadlouydarab, M., & Haddad, A. S. (2023). Effects of temperature and nanofluid type on the oil recovery from a vertical porous media in antigravity fluid injection. Chemical Engineering Research and Design, 193, 394-408. doi.org/10.1016/j.cherd.2023.03.046. ##
  28. Song, Y., Song, Z., Guo, J., Feng, D., & Chang, X. (2021). Phase behavior and miscibility of CO2–hydrocarbon mixtures in shale nanopores. Industrial & Engineering Chemistry Research, 60(14), 5300-5309. doi.org/10.1021/acs.iecr.1c00717. ##
  29. Tang, X., Li, Y., Cao, J., Liu, Z., Chen, X., Liu, L., Zhang Y. & Li, Q. (2023). Adaptability and enhanced oil recovery performance of surfactant–polymer flooding in inverted seven-spot well pattern. Physics of Fluids, 35(5). doi.org/10.1063/5.0147806. ##
  30. Liu, X., Kang, Y., Yan, L., Tian, J., Li, J., & You, L. (2022). Implication of interfacial tension reduction and wettability alteration by surfactant on enhanced oil recovery in tight oil reservoirs. Energy Reports, 8, 13672-13681. doi.org/10.1016/j.egyr.2022.10.052. ##
  31. Tu, J., & Sheng, J. J. (2020). Experimental and numerical study of surfactant solution spontaneous imbibition in shale oil reservoirs. Journal of the Taiwan Institute of Chemical Engineers, 106, 169-182. doi.org/10.1016/j.jtice.2019.11.003. ##
  32. Mohamed, A. I., Khishvand, M., & Piri, M. (2023). Entrapment and mobilization dynamics during the flow of viscoelastic fluids in natural porous media: A micro-scale experimental investigation. Physics of Fluids, 35(4). doi.org/10.1063/5.0139401. ##
  33. Talebian, S. H., Masoudi, R., Tan, I. M., & Zitha, P. L. J. (2014). Foam assisted CO2-EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering, 120, 202-215. doi.org/10.1016/j.petrol.2014.05.013. ##
  34. Garrido, J. M., Cifuentes, L., Cartes, M., Segura, H., & Mejía, A. (2014). High-pressure interfacial tensions for nitrogen+ ethanol, or hexane or 2-methoxy-2-methylbutane: A comparison between experimental tensiometry and Monte Carlo simulations. The Journal of Supercritical Fluids, 89, 78-88. doi.org/10.1016/j.supflu.2014.02.012. ##
  35. Tsuzuki, R., Tanaka, R., Ban, T., & Nagatsu, Y. (2019). Deviation from capillary number scaling of nonlinear viscous fingering formed by the injection of Newtoniansurfactant solution. Physics of Fluids, 31(4). doi.org/10.1063/1.5090827. ##
  36. Gandomkar, A., Sheykhneshin, M. G., Nasriani, H. R., Yazdkhasti, P., & Safavi, M. S. (2022). Enhanced oil recovery through synergy of the interfacial mechanisms by low salinity water alternating carbon dioxide injection. Chemical Engineering Research and Design, 188, 462-472. doi.org/10.1016/j.cherd.2022.09.053. ##
  37. Zhao, H., Kang, W., Yang, H., Zhang, H., Zhu, T., Wang, F., Li, X., Zhou, B., Sarsenbekuly, B., Aidarova, S. and Ibrashev, K., (2020). Imbibition enhancing oil recovery mechanism of the two surfactants. Physics of Fluids, 32(4). doi.org/10.1063/5.0005106. ##
  38. Bollineni, P. K., Dordzie, G., Olayiwola, S. O., & Dejam, M. (2021). An experimental investigation of the viscosity behavior of solutions of nanoparticles, surfactants, and electrolytes. Physics of Fluids, 33(2). doi.org/10.1063/5.0038002. ##
  39. Narayanan Nair, A. K., Che Ruslan, M. F. A., Cui, R., & Sun, S. (2022). An overview of the oil+ brine two-phase system in the presence of carbon dioxide, methane, and their mixture. Industrial & Engineering Chemistry Research, 61(49), 17766-17782. doi.org/10.1021/acs.iecr.2c03089. ##
  40. Lashkarbolooki, M., & Ayatollahi, S. (2018). The effects of pH, acidity, asphaltene and resin fraction on crude oil/water interfacial tension. Journal of Petroleum Science and Engineering, 162, 341-347. doi.org/10.1016/j.petrol.2017.12.061. ##
  41. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data, 59(11), 3624-3634. doi.org/10.1021/je500730e. ##
  42. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid phase equilibria, 375, 191-200. doi.org/10.1016/j.fluid.2014.04.017. ##
  43. Soleymanzadeh, A., Rahmati, A., Yousefi, M., & Roshani, B. (2021). Theoretical and experimental investigation of effect of salinity and asphaltene on IFT of brine and live oil samples. Journal of Petroleum Exploration and Production, 11, 769-781. doi.org/10.1007/s13202-020-01020-1. ##
  44. Abdi, A., Ranjbar, B., Kazemzadeh, Y., Aram, F., & Riazi, M. (2024). Investigating the mechanism of interfacial tension reduction through the combination of low-salinity water and bacteria. Scientific Reports, 14(1), 11408. doi.org/10.1038/s41598-024-62255-0. ##
  45. Ali, S. I., Lalji, S. M., Hashmi, S., Awan, Z., Iqbal, A., & Al-Ammar, E. A. (2024). Risk quantification and ranking of oil fields and wells facing asphaltene deposition problem using fuzzy TOPSIS coupled with AHP. Ain Shams Engineering Journal, 15(1), 102289. doi.org/10.1016/j.asej.2023.102289. ##
  46. Fakher, S., Ahdaya, M., Elturki, M., & Imqam, A. (2020). Critical review of asphaltene properties and factors impacting its stability in crude oil. Journal of Petroleum Exploration and Production Technology, 10, 1183-1200. doi.org/10.1007/s13202-019-00811-5. ##
  47. Mehrjoo, H., Riazi, M., Amar, M. N., & Hemmati-Sarapardeh, A. (2020). Modeling interfacial tension of methane-brine systems at high pressure and high salinity conditions. Journal of the Taiwan Institute of Chemical Engineers, 114, 125-141. doi.org/10.1016/j.jtice.2020.09.014. ##
  48. Amar, M. N., Shateri, M., Hemmati-Sarapardeh, A., & Alamatsaz, A. (2019). Modeling oil-brine interfacial tension at high pressure and high salinity conditions. Journal of Petroleum Science and Engineering, 183, 106413. doi.org/10.1016/j.petrol.2019.106413. ##
  49. Behnamnia, M., Monfared, A. D., & Sarmadivaleh, M. (2022). Hybrid artificial intelligence paradigms for modeling of water-gas (pure/mixture) interfacial tension. Journal of Natural Gas Science and Engineering, 108, 104812. doi.org/10.1016/j.jngse.2022.104812. ##
  50. Amar, M. N. (2021). Towards improved genetic programming based-correlations for predicting the interfacial tension of the systems pure/impure CO2-brine. Journal of the Taiwan Institute of Chemical Engineers, 127, 186-196. doi.org/10.1016/j.jtice.2021.08.010.
  51. Cao, Y., Du, J., Bai, Y., Ghadiri, M., & Mohammadinia, S. (2021). Towards estimating surface tension of biodiesels: Application to thermodynamic and intelligent modeling. Fuel, 283, 118797. doi.org/10.1016/j.fuel.2020.118797. ##
  52. Deng, J., Zhang, Y., & Jia, G. (2023). Surface tension of binary and ternary mixtures mapping with ASP and UNIFAC models based on machine learning. Physics of Fluids, 35(6). doi.org/10.1063/5.0152893. ##
  53. Sulaiman, M., & Khan, N. A. (2023). Predictive modeling of oil and water saturation during secondary recovery with supervised learning. Physics of Fluids, 35(6). doi.org/10.1063/5.0152071. ##
  54. Ayatollahi, S., Hemmati-Sarapardeh, A., Roham, M., & Hajirezaie, S. (2016). A rigorous approach for determining interfacial tension and minimum miscibility pressure in paraffin-CO2 systems: Application to gas injection processes. Journal of the Taiwan Institute of Chemical Engineers, 63, 107-115. doi.org/10.1016/j.jtice.2016.02.013. ##
  55. Rowane, A. J., Gupta, A., Gavaises, M., & McHugh, M. A. (2020). Experimental and modeling investigations of the interfacial tension of three different diesel+ nitrogen mixtures at high pressures and temperatures. Fuel, 280, 118543. doi.org/10.1016/j.fuel.2020.118543. ##
  56. Cumicheo, C., Cartes, M., Müller, E. A., & Mejía, A. (2018). Experimental measurements and theoretical modeling of high-pressure mass densities and interfacial tensions of carbon dioxide+ n-heptane+ toluene and its carbon dioxide binary systems. Fuel, 228, 92-102. doi.org/10.1016/j.fuel.2018.04.057. ##
  57. Danzer, A., & Enders, S. (2018). Comparison of two modelling approaches for the interfacial tension of binary aqueous mixtures. Journal of Molecular Liquids, 266, 309-320. doi.org/10.1016/j.molliq.2018.06.061. ##
  58. Rashid S., Harimi B. & Hamidpour E. (2017). Prediction of CO2-Brine interfacial tension using arigorous approach. Journal of Natural Gas Science and Engineering, 45, 108-117. doi.org/10.1016/j.jngse.2017.05.002. ##
  59. Mirzaie, M., & Tatar, A. (2020). Modeling of interfacial tension in binary mixtures of CH4, CO2, and N2-alkanes using gene expression programming and equation of state. Journal of Molecular Liquids, 320, 114454. doi.org/10.1016/j.molliq.2020.114454. ##
  60. Ameli, F., Hemmati-Sarapardeh, A., Tatar, A., Zanganeh, A., & Ayatollahi, S. (2019). Modeling interfacial tension of normal alkane-supercritical CO2 systems: Application to gas injection processes. Fuel, 253, 1436-1445. doi.org/10.1016/j.fuel.2019.05.078. ##
  61. Abooali, D., Sobati, M. A., Shahhosseini, S., & Assareh, M. (2019). A new empirical model for estimation of crude oil/brine interfacial tension using genetic programming approach. Journal of Petroleum Science and Engineering, 173, 187-196. doi.org/10.1016/j.petrol.2018.09.073. ##
  62. Chowdhury, S., Shrivastava, S., Kakati, A., & Sangwai, J. S. (2022). Comprehensive review on the role of surfactants in the chemical enhanced oil recovery process. Industrial & Engineering Chemistry Research, 61(1), 21-64. doi.org/10.1021/acs.iecr.1c03301. ##
  63. Hosseini, S. H., Moradkhani, M. A., Rasteh, M., & Rahimi, M. (2021). New smart models for minimum fluidization velocity forecasting in the tapered fluidized beds based on particle size distribution. Industrial & Engineering Chemistry Research, 60(42), 15289-15300. doi.org/10.1021/acs.iecr.1c02682. ##
  64. Moradkhani, M. A., Hosseini, S. H., Mansouri, M., Zad, H. O., Karami, M., & Ahmadi, G. (2022). New general models for condensation heat transfer coefficient of carbon dioxide in smooth tubes by intelligent and least square fitting approaches. Journal of Cleaner Production, 330, 129762. doi.org/10.1016/j.jclepro.2021.129762. ##
  65. Moradkhani, M. A., Hosseini, S. H., Karami, M., Olazar, M., & Saldarriaga, J. F. (2023). Applying conventional and intelligent approaches to model the minimum spouting velocity of vegetable biomasses in conical spouted beds. Powder Technology, 418, 118300. doi.org/10.1016/j.powtec.2023.118300. ##
  66. Moradkhani, M. A., Hosseini, S. H., Valizadeh, M., & Mengjie, S. O. N. G. (2021). Machine learning based models to predict frost characteristics on cryogenic surfaces under forced convection conditions. International Communications in Heat and Mass Transfer, 129, 105667. doi.org/10.1016/j.icheatmasstransfer.2021.105667. ##
  67. Hosseini, S. H., Rezaei, M. J., Bag-Mohammadi, M., Karami, M., Moradkhani, M. A., Panahi, M., & Olazar, M. (2019). Estimation of the minimum spouting velocity in shallow spouted beds by intelligent approaches: Study of fine and coarse particles. Powder Technology, 354, 456-465. doi.org/10.1016/j.powtec.2019.06.025. ##
  68. Liu, W., Qi, H., Shi, H., Yu, C., & Li, X. (2023). Helical model based on artificial neural network for large eddy simulation of compressible wall-bounded turbulent flows. Physics of Fluids, 35(4). doi.org/10.1063/5.0137607. ##
  69. Moradkhani, M. A., Hosseini, S. H., & Ranjbar, K. (2023). Universal intelligent models for liquid density of CO2+ hydrocarbon mixtures. Fuel, 334, 126642. doi.org/10.1016/j.fuel.2022.126642. ##
  70. Alipanahi, E., Moradkhani, M. A., Zolfaghari, A., & Bayati, B. (2023). Robust intelligent approaches to predict the CO2 frosting temperature in natural gas mixtures under cryogenic conditions. International Journal of Refrigeration, 154, 281-289. doi.org/10.1016/j.ijrefrig.2022.11.018. ##
  71. Moradkhani, M. A., Hosseini, S. H., Shangwen, L., & Mengjie, S. (2022). Intelligent computing approaches to forecast thickness and surface roughness of frost layer on horizontal plates under natural convection. Applied Thermal Engineering, 217, 119258. doi.org/10.1016/j.applthermaleng.2022.119258. ##
  72. Moradi, M., Moradkhani, M. A., Hosseini, S. H., & Olazar, M. (2023). Intelligent modeling of photocatalytically reactive yellow 84 azo dye removal from aqueous solutions by ZnO-light expanded clay aggregate nanoparticles. International Journal of Environmental Science and Technology, 20(3), 3009-3022. doi.org/10.1007/s13762-022-04728-1. ##
  73. Moradkhani, M. A., Hosseini, S. H., Ranjbar, K., & Moradi, M. (2023). Intelligent modeling of hydrogen sulfide solubility in various types of single and multicomponent solvents. Scientific Reports, 13(1), 3777. doi.org/10.1038/s41598-023-30777-8. ##
  74. Xue, H., Wang, C., Jiang, L., Wang, H., Lv, Z., Huang, J., & Xiao, W. (2022). Asphaltene precipitation trend and controlling its deposition mechanism. Natural Gas Industry B, 9(1), 84-95. doi.org/10.1016/j.ngib.2021.12.001. ##
  75. Bolboaca, S. D., & Jäntschi, L. (2006). Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo Journal of Sciences, 5(9), 179-200. ##
  76. Zendehboudi, A., & Li, X. (2017). A robust predictive technique for the pressure drop during condensation in inclined smooth tubes. International Communications in Heat and Mass Transfer, 86, 166-173. doi.org/10.1016/j.icheatmasstransfer.2017.05.030. ##
  77. Mahdaviara, M., Rostami, A., Helalizadeh, A., & Shahbazi, K. (2021). Smart modeling of viscosity of viscoelastic surfactant self-diverting acids. Journal of Petroleum Science and Engineering, 196, 107617. doi.org/10.1016/j.petrol.2020.107617. ##
  78. Mahdaviara, M., Rostami, A., Keivanimehr, F., & Shahbazi, K. (2021). Accurate determination of permeability in carbonate reservoirs using Gaussian Process Regression. Journal of Petroleum Science and Engineering, 196, 107807. doi.org/10.1016/j.petrol.2020.107807. ##
  79. Mahdaviara, M., Amar, M. N., Ostadhassan, M., & Hemmati-Sarapardeh, A. (2022). On the evaluation of the interfacial tension of immiscible binary systems of methane, carbon dioxide, and nitrogen-alkanes using robust data-driven approaches. Alexandria Engineering Journal, 61(12), 11601-11614. doi.org/10.1016/j.aej.2022.04.049. ##
  80. Guggenheim, E. A., & Adam, N. K. (1933). The thermodynamics of adsorption at the surface of solutions. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 139(837), 218-236. doi.org/10.1098/rspa.1933.0015. ##
  81. Austad, T. (2013). Water-based EOR in carbonates and sandstones: new chemical understanding of the EOR potential using “smart water”. In Enhanced oil recovery Field case studies (pp. 301-335). Gulf Professional Publishing. doi.org/10.1016/B978-0-12-386545-8.00013-0. ##
  82. Qiao, W., Li, J., Zhu, Y., & Cai, H. (2012). Interfacial tension behavior of double long-chain 1, 3, 5-triazine surfactants for enhanced oil recovery. Fuel, 96, 220-225. doi.org/10.1016/j.fuel.2012.01.014. ##