Diagenetic processes imprint on reservoir quality and hydraulic flow units of the lower Cretaceous strata (Fahliyan Formation), Izeh and Dezful Zones, Zagros Basin, SW Iran

Document Type : Research Paper

Authors

1 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 National Iranian Oil Company (NIOC), Exploration and Directorate, Tehran, Iran

Abstract

The Fahliyan Formation, a significant carbonate reservoir in southwestern Iran encompassing the Izeh and Dezful Zones, underwent detailed petrographic investigations. These analyses revealed eight distinct microfacies associated with four different depositional settings within a homoclinal ramp model. From a diagenesis perspective, the formation has undergone various processes, including micritization, dissolution, compaction, cementation, dolomitization, stylolitization, and fracturing. These diagenetic features affected the Fahliyan Formation from early marine–meteoric to late burial diagenetic realms. Notably, dissolution developed as the most effective and widespread diagenetic feature, improving reservoir quality. Likewise, fracture and dolomitization positively impact reservoir quality, while compaction and cementation have destructive effects. Micritization and early isopachous calcite cement have a retentive role in reservoir characteristics. In addition, the Flow Zone Indicator (FZI) approach introduced three Hydraulic Flow Units (HFUs). The correlation between microfacies types and their petrophysical features indicates that the bioclastic peloid packstones and grainstones have better reservoir quality, which resulted from dissolution, and initial isopachous calcite cements. Also, Planktonic foraminifer’s bioclastic mud/ wackestone and Quartz-bearing mudstone, equivalent to HFU1, indicate lower reservoir quality due to the compaction (stylolitization) and cementation.

Keywords


  1. Ghazban, F. (2009). Petroleum geology of the Persian Gulf. Tehran University Press.##
  2. Christian, L. (1997). Cretaceous subsurface geology of the Middle East region. GeoArabia, 2(3), 239-256. ##
  3. Esmaeili, B., Rahimpour-Bonab, H., Kadkhodaie, A., Ahmadi, A., & Hosseinzadeh, S. (2022). Developing a saturation-height function for reservoir rock types and comparing the results with the well log-derived water saturation, a case study from the Fahliyan formation, Dorood oilfield, Southwest of Iran. Journal of Petroleum Science and Engineering, 212, 110268. doi.org/10.1016/j.petrol.2022.110268. ##
  4. Ranjbar-Karami, R., Tavoosi Iraj, P., & Mehrabi, H. (2021). Integrated rock typing and pore facies analyses in a heterogeneous carbonate for saturation height modelling, a case study from Fahliyan Formation, the Persian Gulf. Journal of Petroleum Exploration and Production, 11, 1577-1595. ##
  5. Moallemi, S. A. (2000). Microfacies, sedimentary environment and variation of porosity of Fahliyan formation in Khark Area (Doctoral dissertation, Thesis submitted for the Master of Science at the University of Azad, Tehran, Iran (in Persian), 107). ##
  6. Hashemi-Hosseini, P. (2006). Biostratigraphy of fahliyan formation at type section and subsurface section well number 1 of Dara oilfield (Doctoral dissertation, Dissertation, University of Tehran). ##
  7. Karami, S., Ahmadi, V., Sarooe, H., & Bahrami, M. (2020). Facies analysis and depositional environment of the Oligocene–Miocene Asmari Formation, in Interior Fars (Zagros Basin, Iran). Carbonates and Evaporites, 35, 1-11. ##
  8. Adabi, M. H., Salehi, M. A., & Ghabeishavi, A. (2010). Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, 39(3), 148-160. doi.org/10.1016/j.jseaes.2010.03.011. ##
  9. Noori, H., Mehrabi, H., Rahimpour-Bonab, H., & Faghih, A. (2019). Tectono-sedimentary controls on Lower Cretaceous carbonate platforms of the central Zagros, Iran: An example of rift-basin carbonate systems. Marine and Petroleum Geology, 110, 91-111. doi.org/10.1016/j.marpetgeo.2019.07.008. ##
  10. Khazaei M. (2003). Depositional environment of the fahliyan formation in Binak and Charbishe oil field, South Dezful embayment, Doctoral dissertation, University of Tarbiyat-Moalem, 1-84. ##
  11. Lasemi, Y., Mohammad-Khani, H., Khazaei, M., Kavoosi, M.A., (2003). Depositional environment and sequence stratigraphy of the Fahliyan Formation in Rag-e Sefid, Binak and Khaviz Oil Fields, south Dezful Embayment. In: 7th Annual Meeting of the Geological Society of Iran (in Persian), 323–327. ##
  12. Lasemi, Y., Feyzi, M. (2007). Platform and off-platform facies of Fahliyan Formation: evidence for intrashelf basin in the southwest of Iran. 25th Symposium of Geology, Geological Survey of Iran (in Persian), 84–85. ##
  13. Maleki, S., & Lasemi, Y. (2011). Sedimentary environment sequence stratigraphy of the Fahliyan Formation in Assaluyeh (Bidkhon) and Khartang sections, Southwest Iran. Journal of Basic and Applied Scientific Research, 1(12), 2641-2647. ##
  14. Sahraeyan, M., Bahrami, M., Hooshmand, M., Ghazi, S., & Al-Juboury, A. I. (2013). Sedimentary facies and diagenetic features of the Early Cretaceous Fahliyan Formation in the Zagros Fold-Thrust Belt, Iran. Journal of African Earth Sciences, 87, 59-70. doi.org/10.1016/j.jafrearsci.2013.07.004. ##
  15. Hosseini, S.A. (2014). Holostratigraphy of the Berriasian-Aptian Carbonate Platform Deposits from the Zagros Fold-Thrust Belt, SW Iran. PhD Thesis, University of Geneva, Switzerland, 273. ##
  16. Hosseini, S., Conrad, M. A., Clavel, B., & Carras, N. (2016). Berriasian-Aptian shallow water carbonates in the Zagros fold-thrust belt, SW Iran: Integrated Sr-isotope dating and biostratigraphy. Cretaceous Research, 57, 257-288. doi.org/10.1016/j.cretres.2015.09.007. ##
  17. Hosseini, S., Conrad, M. A., & Kindler, P. (2021). Sequence stratigraphy, depositional setting and evolution of the Fahliyan carbonate platform (Zagros fold-thrust belt, SW Iran) in the Early Cretaceous. Marine and Petroleum Geology, 128, 105062. doi.org/10.1016/j.marpetgeo.2021.105062. ##
  18. Rostamtabar, M., Khanehbad, M., Gharaie, M. H. M., Mahboubi, A., & Hajian-Barzi, M. (2022). Facies analysis and sequence stratigraphy of the Lower Cretaceous strata (Fahliyan Formation) in Izeh Zone, Zagros Basin, SW Iran. Carbonates and Evaporites, 37(4), 63. ##
  19. Valinasab, H., Soltani, B., Hassanzadeh, H., Kadkhodaie, A., Nazemi, M., & Abdolahi, E. (2023). Seismic sequence stratigraphy and depositional modelling of the Lower Fahliyan Formation in the northwestern Persian Gulf, SW Iran. Marine and Petroleum Geology, 152, 106251. doi.org/10.1016/j.marpetgeo.2023.106251. ##
  20. Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., Morsalnejad, D. and Mazzoli, S., (2018). Early Jurassic rifting of the Arabian passive continental margin of the Neo-Tethys. Field evidence from the Lurestan region of the Zagros fold-and-thrust belt, Iran. Tectonics, 37(8), pp.2586-2607. doi.org/10.1029/2018TC005192. ##
  21. Tucker, M.E. (1993). Carbonate Diagenesis and Sequence Stratigraphy. In V.P. Wright (Ed.), Sedimentology Review, Oxford, Blackwell Scientific Publications, 1, 51-72. ##
  22. Bourque, P. A., Savard, M. M., Chi, G., & Dansereau, P. (2001). Diagenesis and porosity evolution of the Upper Silurian–lowermost Devonian West Point reef limestone, eastern Gaspé Belt, Québec Appalachians. Bulletin of Canadian Petroleum Geology, 49(2), 299-326. doi.org/10.2113/49.2.299. ##
  23. Eberli, G.P., Anselmetti, F.S., Kenter, J.A.M., Mcneill, D.F., & Melim, L.A. (2001). Calibration of seismic sequence stratigraphy with cores and logs (in Sub-surface geology of a prograding carbonate platform margin, Great Bahama Bank; results of the Bahamas Drilling Project, Ginsburg). Special Publication - Society for Sedimentary Geology, 70, 241-265. ##
  24. Glumac, B., & Walker, K. R. (2002). Effects of grand-cycle cessation on the diagenesis of Upper Cambrian carbonate deposits in the southern Appalachians, USA. Journal of Sedimentary Research, 72(4), 570-586. doi.org/10.1306/111501720570. ##
  25. Booler, J., & Tucker, M. E. (2002). Distribution and geometry of facies and early diagenesis: the key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees. Sedimentary Geology, 146(3-4), 225-247. doi.org/10.1016/S0037-0738(01)00120-8. ##
  26. Bosence, D. (2002). Carbonate Reservoirs Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Developments in Sedimentology, 55; Clyde H. Moore; Elsevier, Amsterdam, hardbound, ISBN 0-444-50838-4 (€ 158.8, 172.5); softbound, ISBN 0-444-50850-3 (€ 72.6, 79). Marine and Petroleum Geology, 19(10), 1295-1296. ##
  27. Caron, V., Nelson, C. S., & Kamp, P. J. (2005). Sequence stratigraphic context of syndepositional diagenesis in cool-water shelf carbonates: Pliocene limestones, New Zealand. Journal of Sedimentary Research, 75(2), 231-250. doi.org/10.2110/jsr.2005.018. ##
  28. Morad, S., Al-Aasm, I. S., Nader, F. H., Ceriani, A., Gasparrini, M., & Mansurbeg, H. (2012). Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi oilfield, United Arab Emirates. GeoArabia, 17(3), 17-56. doi.org/10.2113/geoarabia170317. ##
  29. Falcon, N. L. (1961). Major earth-flexuring in the Zagros Mountains of south-west Iran. Quarterly Journal of the Geological Society, 117(1-4), 367-376. doi.org/10.1144/gsjgs.117.1.0367. ##
  30. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265. doi.org/10.1139/e81-019. ##
  31. Motiei, H. (1993). Stratigraphy of Zagros. Geological Survey of Iran Publication (in Persian), 536.
  32. Sherkati, S., & Letouzey, J. (2004). Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and petroleum geology, 21(5), 535-554. doi.org/10.1016/j.marpetgeo.2004.01.007. ##
  33. Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1), 1-20. ##
  34. Heydari, E. (2008). Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451(1-4), 56-70. doi.org/10.1016/j.tecto.2007.11.046. ##
  35. Khomsi, S., Roure, F., Al-Garni, M. A., & Amin, A. (Eds.). (2020). Arabian Plate and Surroundings: Geology, Sedimentary Basins and Georesources. Berlin/Heidelberg, Germany: Springer. ##
  36. Esfandyari, M., Mohseni, H., Kavoosi, M.A. & Conrad, M.A. (2022). Facies analysis and sequence stratigraphy of the Fahliyan Formation in “A” oil field, Zagros structural zone, SW Iran. Arab J Geosci 15, 225. doi.org/10.1007/s12517-022-09473-w. ##
  37. Morad, S. (2023). PRE-, SYN-AND post-tectonic diagenetic evolution of a carbonate reservoir: a case study of the lower cretaceous fahliyan formation in the Dezful embayment, Zagros Foldbelt, SW IRAN. Journal of Petroleum Geology, 46(4), 441-462. doi.org/10.1111/jpg.12846. ##
  38. Simmons, M. D., Sharland, P. R., Casey, D. M., Davies, R. B., & Sutcliffe, O. E. (2007). Arabian Plate sequence stratigraphy: Potential implications for global chronostratigraphy. Geoarabia-Manama-, 12(4), 101. ##
  39. Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application, 976, Berlin: springer. ##
  40. Van Buchem, F. S. P., Gaumet, F., Vedrenne, V., & Vincent, B. (2006). Middle East Cretaceous sequence stratigraphy study, part1-SW Iran. National Iranian Oil Company (NIOC) internal report (unpublished), 7, 58. ##
  41. Jamalian, M., Adabi, M. H., Moussavi, M. R., Sadeghi, A., Baghbani, D., & Ariyafar, B. (2011). Facies characteristic and paleoenvironmental reconstruction of the Fahliyan Formation, Lower Cretaceous, in the Kuh-e Siah area, Zagros Basin, southern Iran. Facies, 57, 101-122. ##
  42. Machel, H. G. (2004). Concepts and models of dolomitization: a critical reappraisal. Geological Society, London, Special Publications, 235(1), 7-63. doi.org/10.1144/GSL.SP.2004.235.01.02. ##
  43. Bathurst, R. G. (1972). Carbonate sediments and their diagenesis. Elsevier. ##
  44. Longman, M. W. (1980). Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bulletin, 64(4), 461-487. doi.org/10.1306/2F918A63-16CE-11D7-8645000102C1865D ##
  45. Aqrawi, A. A. M., Thehni, G. A., Sherwani, G. H., & Kareem, B. M. A. (1998). Mid-Cretaceous rudist-bearing carbonates of the Mishrif Formation: An important reservoir sequence in the Mesopotamian Basin, Iraq. Journal of petroleum Geology, 21(1), 57-82. doi.org/10.1111/j.1747-5457.1998.tb00646.x. ##
  46. Alsharhan, A.S., & Nairn, A.E.M. (1997). Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, Netherlands. ##
  47. Hood, S. D., Nelson, C. S., & Kamp, P. J. (2004). Burial dolomitisation in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand. Sedimentary Geology, 172(1-2), 117-138. doi.org/10.1016/j.sedgeo.2004.08.005. ##
  48. Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. doi.org/10.1144/1354-079310-040 ##
  49. Harris, P.M., Kendall, C.G.S.C., & Lerche, I. (1985). Carbonate cementation- a brief review. In: N. Schneidermann and P.M. Harris (Editors), Carbonate Cements. Soc. Econ. Paleontol. Mineral, Spec. Publ. (36): 79-95. ##
  50. Folk, R. L. (1959). Practical petrographic classification of limestones. AAPG bulletin, 43(1), 1-38. doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D. ##
  51. Moore, C.H., & Wade, W.J. (2013). Carbonate reservoirs: porosity, evolution & diagenesis in a sequence stratigraphic framework: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, Second edition, Elsevier, 369. ##
  52. Aqrawi, A. A. M., Thehni, G. A., Sherwani, G. H., & Kareem, B. M. A. (1998). Mid-Cretaceous rudist-bearing carbonates of the Mishrif Formation: An important reservoir sequence in the Mesopotamian Basin, Iraq. Journal of petroleum Geology, 21(1), 57-82. doi.org/10.1111/j.1747-5457.1998.tb00646.x. ##
  53. Onuh, H. M., David, O. O., & Onuh, C. Y. (2017). Modified reservoir quality indicator methodology for improved hydraulic flow unit characterization using the normalized pore throat methodology (Niger Delta field as case study). Journal of Petroleum Exploration and Production Technology, 7, 409-416. ##
  54. Al-Qattan, W. M., & Al Mohammed, A. H. (2017). Permeability prediction by classical and flow zone indictor (fzi) methods for an Iraqi gas field. Iraqi Journal of Chemical and Petroleum Engineering, 18(3), 59-65. ##
  55. Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993, October). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE Annual Technical Conference and Exhibition? (pp. SPE-26436). SPE. doi.org/10.2118/26436-MS. ##
  56. Abbaszadeh, M., Fujii, H., & Fujimoto, F. (1996). Permeability prediction by hydraulic flow units—theory and applications. SPE Formation Evaluation, 11(04), 263-271. doi.org/10.2118/30158-PA. ##