Fracture characterization and prediction in a volcanic reservoir: A case study of the Permian Jiamuhe Formation in the Jinlong 2 Oil Field, Junggar Basin, China

Document Type : Research Paper

Authors

1 Research Institute of Petroleum Exploration & Development of PetroChina, Beijing, China

2 Research Institute of Petroleum Exploration and Development of PetroChina, Beijing, China

3 PetroChina Qinghai Oilfield Company, Dunhuang, Gansu, China

4 PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang, China

Abstract

Fractures are the main flow channels for oil and gas in the Permian Jiamuhe Formation volcanic reservoir in the Jinlong 2 Oilfield at the northwestern margin of the Junggar Basin. According to core, thin section and image logging data analyses, the fractures in this area are dominantly semifilled or unfilled high-angle fractures, followed by semifilled low-angle oblique fractures, and vertical fractures. The image logging results show that the fractures are oriented nearly east–west, approximately parallel to the direction of the present-day maximum principal in situ stress, and they have good flow effectiveness. The volcanic reservoir fracture development is mainly affected by structure and lithology. The fractures are mostly distributed in strips along the faults. The closer to the fault, the greater the structural curvature and the more developed the fractures. The fractures of intermediate–acid volcanic lava and pyroclastic lava are well developed in the study area. Additionally, the fracture development characteristics of a single well are determined by calculating the fracture density, fracture dip angle, and fracture porosity. Combined with the prestack seismic prediction method, i.e., amplitude versus azimuth (AVAZ), the attenuation initial frequency attribute is selected to predict the fracture distribution characteristics of the Jiamuhe Formation volcanic reservoir.

Keywords


  1. Cas, R., & Wright, J. (2012). Volcanic successions modern and ancient: A geological approach to processes, products and successions. Springer Science & Business Media. ISBN 978-0-412-44640-5.
  2. Dai Shihua, L. X., Jun, W., & Shuyun, J. (1998). Log response and interpretation of velcanic rock reservoir. Xinjiang Petroleum Geology, 19(6): 465.##
  3. Gao, Q. T., Huang, S. Z., & Shi, X. Q. (1998). Study of conglomerate & volcanic rock reservoir using FMI log data. Well Logging Technology (in Chinese), 22, 55-59. ##
  4. Li, C., Huang, L., Chen, L., & Yu, C. (2013, July). Bgg: A graph grammar approach for software architecture verification and reconfiguration. In 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 291-298, IEEE. doi: 10.1109/IMIS.2013.56. ##
  5. Chen, G. H., & Fan, Y. R. (2000). An evaluation technique for volcanic reservoir using well-logging data. China Offshore Oil and Gas (Geology)(in Chinese), 14(6), 422-428. ##
  6. Guo, Z. H., Wang, P. J., Yin, H., & Huang, L. (2006). Relationship between lithofacies and logging facies of the volcanic reservoir rocks in Songliao Basin. Journal of Jilin University(Earth Science Edition), 36(2): 207-214. ##
  7. Young, E. L., & Paton-Walsh, C. (2010, August). Formaldehyde and nitrogen dioxide in smoke plumes from Australia’s Black Saturday fires. In IOP Conference Series: Earth and Environmental Science, 11, No. 1, p. 012023). IOP Publishing. DOI: 10.1088/ 1755-1315/11/1/012023. ##
  8. Xiao XL, Jin XJ, Zhang X, Liu H., Jiang Y (2015) Fracture identification based on information fusion of conventional logging and electrical imaging logging. Oil Geophysical Prospecting. 50(3): 542-547. DOI: 10.13810/j.cnki.issn.1000-7210.2015.03.023. ##
  9. Wang, K., Yang, H. J., Zhang, H. L., Li, Y., Zhang, R. H., Yang, X. J. & Wang, J. P. (2018). Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir: a case study of Keshen-8 gas pool in Kuqa Depression, Tarim Basin. Oil Geol. 39(4): 719-729. doi: 10.11743/ogg20180409. ##
  10. Li, M., Zhou, F., Sun, Z., Dong, E., Zhuang, X., Yuan, L., & Wang, B. (2022). Experimental study on plugging performance and diverted fracture geometry during different temporary plugging and diverting fracturing in Jimusar shale. Journal of Petroleum Science and Engineering, 215, 110580. ISSN: 0920-4105. ##
  11. Chen, G. H., Wu, W. S., & Wang, Z. W. (1999). Fracture identification by microresistivity scanner log. Well Logging Technology (in Chinese), 23(4): 279-281. doi: CNKI: SUN: CJJS.0.1999-04-011. ##
  12. Nie, X., Zou, C., Pan, L., Huang, Z., & Liu, D. (2013). Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370 m). Tectonophysics, 593, 161-171, doi.org/10.1016/j.tecto.2013.03.005. ##
  13. Deng, P. (2002). Log response and explanation of structural fractures in volcanic rock reservoir. Acta Petrolei Sinica, 23(6): 32. doi: 10.3321/ j.issn: 0253-2697. 2002.06.007. ##
  14. Chen, Y., & Tan, M. J. (2003). Fracture detection and identification using logging techniques. Well Logging Technology (in Chinese), 27(S1): 11-14. ##
  15. Zhou, X. G., Cao, C. J. & Yuan, J. Y. (2003). The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law, Advance in Earth sciences. 18(3): 400- 403. doi: 10.11867/j.issn.1001-8166.2003.03.0398. ##
  16. Chen, J. L., Lan, S. Q. & Wang, C. J. (2004). Prediction of Fractured Reservoirs Using Seismic Technology and Its YANG, G. F., Gang, W. A. N. G., GAO, J. S., & XU, C. M. (2007). Coke formation and olefins conversion in FCC naphthaolefin reformulation at low reaction temperature. Journal of Fuel Chemistry and Technology, 35(5): 572-577. doi: 10.1016/S1872-5813(07)60034-6. ##
  17. Guo-hua, Z. H. U., Yi-qin, J. I. A. N. G., & Xian-jing, L. I. (2008). The volcanic reservoir characteristics of Jamuhe Formation in Zhongguai-District 5-(8) area in Karamay oilfield. Xinjiang Petroleum Geology, 29(4): 445. doi: JournalArticle/ 5aed40dac095d710d409f7a6. ##
  18. Sun, Z. C., Jiang, Y. Q., Ming, Z., Chen, Z. H., Chang, Q. S., & Chun-Li, X. U. (2013). Lithology-lithofacies model of Carboniferous volcanic reservoirs in the Junggar Basin, NW China. Journal of China University of Mining & Technology, 42(5), 782-789. ##
  19. Dong, G.D., Zhang, Q., Zhu, X. M., Xian, B. Z., Zhu, S. F., Niu, H. P. & Chen, Q. Y. (2014). Current status and problems of volcanic reservoir study: an example from the Lower Permian volcanic rocks in Ke-Xia area of Junggar Basin. Oil & Gas Geology (in Chinese). 33(4): 511-519. doi: 10.11743/ogg20120403. ##
  20. Guo-ping, L. I. U., Lian-bo, Z. E. N. G., Mao-sheng, L. E. I., Ke-wei, Z. U., Fei, W., & Qi, L. (2016). Fracture development characteristics and main controlling factors of the volcanic reservoir in Xujiaweizi fault depression. Geology in China, 43(1), 329-337. ##
  21. Lu, Y., Lü, H., Cui, Y., & Chen, H. (2018). Method for fracture effectiveness evaluation based on 3D Mohr Circle and its application. Acta Petrolei Sinica, 39(5): 564. doi: 10.7623/syxb201805007. ##
  22. Cao, Y. M., Zhang, C. G., Yang, W. Y. & Xu, J. L. (2006). Fractured reservoir porosity quantitative evaluation using electric imaging logging data. Well Logging Technology (in Chinese). 30(3): 237-239. doi:10.1016/ S1001-8042(06)60011-0. ##
  23. QiGang, G. (2005). Application of AVA fracture detection technique. Natural Gas Industry, 25(5): 42. ##
  24. Chen, D., Chen, L. Q., Wei, X. C. & Wang, Z. (2011). Log evaluation of fractured igneous reservoirs: A case study of the Carboniferous igneous reservoirs in the Junggar Basin. Oil & Gas Geology (in Chinese). 32(1): 83-90. doi: 10.1007/s12182-011-0123-3. ##
  25. Song, M. S., He, N. Q., Yang, S. C., Zhao,Y. F. & Niu, H. R. (2017). Study on the fracture distribution pattern of volcanic rock in thrust fault developed zone. Natural Gas Geoscience. 28(7): 989-999. doi: 10.11764/j.issn. 1672-1926.2017.06.011. ##
  26. Hai-rui, N., Shao-chun, Y., Yong, W., Ni-qian, H., & Bao-quan, M. (2017). Analysis on the formation periods of fractures of volcanic reservoirs in Chepaizi area, Junggar Basin. Natural Gas Geoscience, 28(1): doi: 10.11764/j.issn. 1672-1926.2016.11.021. ##
  27. Ibrahim, A. F., Ibrahim, M., Sinkey, M., Johnston, T., & Johnson, W. (2020, October). Evaluation of single fracture stage performance with integrated rock mechanics and pressure transient analysis. In SPE Annual Technical Conference and Exhibition?, (p. D031S033R006). SPE, doi.org/10.2118/201638-MS. ##
  28. Fu, J. W., Xiao, L. Z. & Zhang, Y. Z. (2004). Status and developing trend of acoustical and electrical imaging well logging tools. progress in geophysics. 19(4): 730-738. doi: 10.1016/S0960-0779(03) 00420-X. ##
  29. Jia, C. M., Zhi, D. M., & Xing, C. Z. (2009). Features and control factors of volcanic rock reservoir in the (in Chinese), 29(1), 33-36. doi: 10.3969/j.issn. 1006-0995.2009.01.009. ##
  30. He, S., Yang, S., Shao, X., & Shi, A. (2011). Ship target detection on the sea surface based on natural measure feature of image block. Infrared and Laser Engineering, 40(9). doi: CNKI: SUN: GWCJ. 0.2011-02-026. ##
  31. Zhang, Y., & Pan, B. Z. (2012). On three calculation methods of volcanic reservoir fracture porosity based on FMI data. Well Logging Technology, 36(4): 365-369. ##
  32. He, H., Li, S., Liu, C., Kong, C., Jiang, Q., & Chang, T. (2020). Characteristics and quantitative evaluation of volcanic effective reservoirs: A case study from Junggar Basin, China. Journal of Petroleum Science and Engineering, 195, 107723, doi.org/10.1016/j.petrol.2020.107723. ##
  33. Zhang, L. & Zhou, Y. S. (2004). Evaluation criteria for development degree of micro cracks in oil and gas reservoir. Acta Petrolei Sinica. 25(4), 33-37. doi: 10.7623/syxb200404007. ##
  34. He, Y. D. & Wei, C. G. (2007). The present situation and research direction of evaluation methods in fracture type reservoir. Progress in Geophysics (in Chinese). 22(2): 537-543. doi: 10.1007/ s11442-007-0020-2. ##
  35. Tang, X. Y., Wang, X. Y., & Zhu, Y. H. (2009). Use synthetic probability method to evaluate the fracture development of volcanic rocks. Natural Gas Exploration and Development (in Chinese), 32(1): 26-27. ##
  36. Wang, C. Y., Gao, T. (2009). Identifying and evaluating the fractures by the Formation MicroImager (FMI) log and estimating parameters of fractures: A case study of Xushen gas field. Natural Gas Industry (in Chinese). 29(8): 38-41. doi: 10.1287/mksc.1080.0385.
  37. ZHAO, H., SHI, X., & Li-qiang, S. (2012). Study on porosity exponent, saturation and fracture porosity for fractured reservoirs. Progress in Geophysics, 27(6): 2639-2645, doi: 10.6038/j.issn.1004-2903.2012.06.043. ##
  38. Chen, S. M., Jiang, C. J., Liu, L., Chu, L. L. & Pei, M. B. (2014). Fracture formation mechanism of volcanic rocks in Xujiaweizi fault depression of Songliao Basin. Journal of Jilin University (Earth Science Edition). 44(6): 1816-1826. doi: 10.13278/j.cnki.jjuese.201406110. ##
  39. Haizhou, Q. U., Zhang, F., Zhenyu, W. A. N. G., Xiangtong, Y. A. N. G., Hongtao, L. I. U., Dan, B. A., & Xi, W. A. N. G. (2016). Quantitative fracture evaluation method based on core-image logging: A case study of Cretaceous Bashijiqike Formation in ks2 well area, Kuqa depression, Tarim Basin, NW China. Petroleum Exploration and Development, 43(3), 465-473. doi: 10.1016/S1876-3804(16)30054-4. ##
  40. Yang, S. C., Niu, H. R., Song, M. S., Zhao, Y. F. & Wang, Y. (2017). Quantitative characterization of development degree of fault-related fracture in compressional thrust structure block of the Carboniferous in Chepaizi area. Journal of China University of Petroleum. 41(5):1-8. doi: 10.3969/ j.issn.1673-5005.2017.05.001. ##
  41. Lu, Z., Tao, M., Zhen-hong, W., Wen-hui, Z., Jiang-wei, S., Wei-li, C., Mei, L. and Qi, Z. (2017). Classification and combination characteristics of fractures in super-deep tight sandstone reservoir of Keshen Gasfield in Tarim Basin. Natural Gas Geoscience, 28(11). doi: 10.11764 / j. issn. 1672G1926. 2017. 09. 010. ##
  42. ZHANG, H., Guoqing, Y., & Haiying, W. A. N. G. (2019). Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 30(3): 379-388. doi: 10.11764/j.issn. 1672-1926.2018.10.020. ##
  43. Ju, W., You, Y., Feng, S. B., Xu, H., Zhang, X., & Wang, S. (2020). Characteristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer, Ordos Basin. Oil Gas Geol, 41(03): 596-605. doi: CNKI: SUN: SYYT.0.2020-03-016. ##
  44. Liu, J. H., Yang, S. C., Chen, N. N. & Zhao, X.D. (2009). Forecasting method of tectoclase in the igneous reservoirs using a curvature of the microtetctonics. Journal of China University of Mining & Technology. 38(6): 815-819. ##
  45. Sun, W., Li, Y. F., Fu, J. W. & Li, T. Y. (2014). Review of fracture identification with well logs and seismic data. Progress in Geophysics (in Chinese). 29(3): 1231-1242. doi: 10.6038/pg20140332. ##
  46. Lu, S. K., Wang, D., Li, Y. K., Meng, X. J., Hu, X. Y. & Chen, S. W. (2015). Research on three-dimensional mechanical parameters’distribution of the tight sandstone reservoirs in Daniudi Gasfield. Nat. Gas Geosci. 26, 1844-1850. doi: 10.11764/j.issn.1672-1926.2015.10.1844. ##
  47. Sun, H., Zhong, D., & Zhan, W. (2019). Reservoir characteristics in the Cretaceous volcanic rocks of Songliao Basin, China: A case of dynamics and evolution of the volcano-porosity and diagenesis. Energy Exploration & Exploitation, 37(2): 607-625. doi: 10.1177/0144598718812546. ##
  48. Wang, Z., Jin, L. X., Guan, Q., Yang, L., & Wu, J. L. (2010). Comprehensive evaluation of volcanic reservoir based on FMI and ECS. Journal of Southwest Petroleum University(Science & Technology Edition), 32(5): 58-64. ##
  49. Yarmohammadi, S., Kadkhodaie, A., & Hosseinzadeh, S. (2020). An integrated approach for heterogeneity analysis of carbonate reservoirs by using image log based porosity distributions, NMR T2 curves, velocity deviation log and petrographic studies: A case study from the South Pars gas field, Persian Gulf Basin. Journal of Petroleum Science and Engineering, 192, 107283. doi: 10.1016/j.petrol.2020.107283. ##
  50. Wu, H., Zhang, X., Li, X., Liao, P., Li, W., Li, Z., Wu, Y. and Pei, F. (2006). Studies on acute toxicity of model toxins by proton magnetic resonance spectroscopy of urine combined with two-step cluster analysis. Chinese Journal of Analytical Chemistry, 34(1): 21-25. doi: 10.1016/S1872-2040(06)60004-2. ##
  51. Xiang, M., Qin, P. B., Zhang, F. W. (2020), Research and application of logging lithology identification for igneous reservoirs based on deep learning, Journal of Applied Geophysics, 173. doi: 10.1016/j.jappgeo. 2019.103929. ##
  52. Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1), 133-150. doi: 10.1111/j. 1365-246X.1981. tb02662.x. ##