Effect of Formation Water and Its Individual Salts on the Stability of Water-in-heavy Crude Oil Emulsions

Document Type : Research Paper

Authors

(Laboratory of Research and Methodology Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil

Abstract

Due to stability problems, petroleum emulsions are still considered a major challenge for the industry. Heavy oil contains high levels of polar compounds and forms highly stable emulsions that are difficult to treat. The aqueous phase of these emulsions, composed of formation water (FW), has high salinity, and these salts can influence the behavior of the emulsions differently. Therefore, the main objective of this study was to evaluate the effect of different saline species on the stability of heavy-oil emulsions. The emulsions were prepared by adding increasing volumes (0.1, 1.0, 10, 20, and 30% w/v) of an aqueous phase containing deionized water (DW), FW, and saturated saline solutions. The emulsions were homogenized at 5,000 rpm for 3 min. The relevant factors were evaluated, including salt type, gravitational separation, temperature, droplet size distribution (DSD), and interfacial tension. The results revealed that emulsions prepared with some acid pH salts and high ionic strength showed kinetic instability with separation from 3.33 to 21.17% of the aqueous phase after 15–25 days of preparation. In contrast, the others remained stable after 30 days, even heating up to 80 °C. Concerning the average DSD, emulsions with acid pH salts showed higher values (1.67±0.36 to 9.03±2.81 µm), whereas lower values (1.09±0.23 to 4.83±1.06 µm) were found in emulsions with DW. The interfacial tension of the dehydrated oil increased in the presence of the salts, especially those with acid pH and high ionic strength, presenting values from 5.37±0.43 to 22.37±0.77 mN/m. Conversely, basic saline solutions decreased the interfacial tension considerably to values below 0.01 mN/m. These results can contribute to a better understanding of heavy oil W/O emulsions stability, considering water phase properties such as pH, ionic strength, and ionic radius of the cation..

Keywords


  1. Kokal, S. and Aramco, S. (2002). Crude Oil Emulsions: A state-of-the-art review, SPE Production & Facilities, 20, 5–13, doi: 10.2118/77497-PA.##
  2. Lee, R. F. (1999). Agents which promote and stabilize water-in-oil emulsions, Spill Science Technology Bulletin, 5, 117–126, doi: 10.1016/S1353-2561(98)00028-0. ##
  3. Fingas, M. (1995). Water-in-oil emulsion formation: a review of physics and mathematical modelling, spill science technology bulletin, 2 (1), 55–59, doi: 10.1016/1353-2561(95)94483-Z. ##
  4. Kiran, S. K., Acosta, E. J. and Moran, K. (2009). Evaluating the hydrophilic–lipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models, Journal of Colloid and Interface Science, 336, 304–313, doi: 10.1016/J.JCIS.2009.03.053. ##
  5. Sad, C. M. S., Santana, ÍL., Morigaki, M. K., Medeiros, E. F., Castro, EVR. and Santos, M. F. P. (2015) New methodology for heavy oil desalination, Fuel, 150, 705–710, doi: 10.1016/j.fuel.2015.02.064. ##
  6. Ghannam, M. T. (2005). Water-in-crude oil emulsion stability investigation, Petroleum Science and Technology, 23, 649–667. doi: 10.1081/LFT-200033001. ##
  7. Kazemzadeh, Y., Ismail, I., Rezvani, H., Sharifi, M. and Riazi, M. (2019). Experimental investigation of stability of water in oil emulsions at reservoir conditions: Effect of ion type, ion concentration, and system pressure, Fuel, 243, 15–27, doi: 10.1016/j.fuel.2019.01.071. ##
  8. Ling, N. N. A., Haber, A., Graham, B. F., Aman, Z. M., May, E. F., Fridjonsson, E. O. and Johns, M. L. (2018). Quantifying the effect of salinity on oilfield water-in-oil emulsion stability, Energy & Fuels, 32, 10042–10049, doi: 10.1021/acs.energyfuels.8b02143. ##
  9. Perles, C. E., Guersoni, V. C. B. and Bannwart, A. C. (2018). Rheological study of crude oil/water interface – The effect of temperature and brine on interfacial film, Journal of Petroleum Science and Engineering, 162, 835–843, doi: 10.1016/j.petrol.2017.11.010. ##
  10. Rostami, P., Mehraban, M. F., Sharifi, M., Dejam, M. and Ayatollahi, S. (2019). Effect of water salinity on oil/brine interfacial behaviour during low salinity waterflooding: A mechanistic study, Petroleum, 5, 367–374, doi: 10.1016/J.PETLM.2019.03.005. ##
  11. Alves, D. R., Carneiro, J. S. A., Oliveira, I. F., Façanha, F., Santos, A. F., Dariva, C., Franceschi, E., Fortuny, M. (2014). Influence of the salinity on the interfacial properties of a brazilian crude oil–brine systems, Fuel 118, 21–26, doi: 10.1016/J.FUEL.2013.10.057. ##
  12. Verruto, V. J., Le, R. K. and Kilpatrick, P. K. (2009). Adsorption and molecular rearrangement of amphoteric species at oil−water interfaces, The Journal of Physical Chemistry B, 113, 13788–13799. doi: 10.1021/JP902923J. ##
  13. Moradi, M., Alvarado, V. and Huzurbazar, S. (2011). Effect of salinity on water-in-crude oil emulsion: Evaluation through drop-size distribution proxy, Energy & Fuels, 25, 260–268, doi: 10.1021/ef101236h. ##
  14. Silva, M., Sad, CMS., Pereira, L. B., Corona, R. R. B., Bassane, J. F. P., dos Santos, F. D., Neto, D. M. C., Silva, S. R. C., Castro, E. V. R., Filgueiras, P. R. (2018). Study of the stability and homogeneity of water in oil emulsions of heavy oil, Fuel, 226, 278–285, doi:10.1016/j.fuel.2018.04.011. ##
  15. Maaref, S. and Ayatollahi, S. (2018). The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: A case study, Journal of Dispersion Science and Technology, 39, 721–733. doi: 10.1080/01932691.2017.1386569. ##
  16. Rayhani, M., Simjoo, M., Chahardowli, M. (2022). Effect of water chemistry on the stability of water-in-crude oil emulsion: Role of aqueous ions and underlyng mechanism, Journal of Petroleum Science and Engineering, 211, 110123, doi: 10.1016/J.PETROL.2022.110123. ##
  17. Wang, X., Brandvik, A. and Alvarado, V. (2010). Probing interfacial water-in-crude oil emulsion stability controls using electrorheology, Energy & Fuels, 24, 6359–6365. doi: 10.1021/EF1008874. ##
  18. Muñoz, A. V. and Solling, T. I. (2017). Imaging emulsions: The effect of salinity on North Sea oils, Journal of Petroleum Science and Engineering, 159, 483–487. doi: 10.1016/j.petrol.2017.09.061. ##
  19. Mahmoudvand, M., Javadi, A. and Pourafshary, P. (2019). Brine ions impacts on water-oil dynamic interfacial properties considering asphaltene and maltene constituents, Colloids Surfaces A, 579, 123665, DOI https://doi.org/10.1016/J.COLSURFA.2019.123665. ##
  20. Hoeiland S, Barth T, Blokhus AM, Skauge A (2001) The effect of crude oil acid fractions on wettability as studied by interfacial tension and contact angles, Journal of Petroleum Science and Engineering, 30, 91–103, doi: 10.1016/S0920-4105(01)00106-1. ##
  21. Dong, M., Ma, S. and Liu, Q. (2009). Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil, Fuel, 88, 1049–1056. doi: 10.1016/j.fuel.2008.11.014. ##
  22. Lashkarbolooki, M. and Ayatollahi, S. (2018). The effects of pH, acidity, asphaltene and resin fraction on crude oil/water interfacial tension, Journal of Petroleum Science and Engineering, 162, 341–347, doi: 10.1016/j.petrol.2017.12.061.
  23. Mahdavi, S. and Moghadam, A. M. (2021). Critical review of underlying mechanisms of interactions of asphaltenes with oil and aqueous phases in the presence of ions, Energy and Fuels, 35, 23, 19211–19247. doi: 10.1021/acs.energyfuels.1c02270. ##
  24. Silva, M., Sad, CMS., Pereira, L. B., Corona, R. R. B., dos Santos, F. D., Kuster, R.M., Castro, E. V. R. and Filgueiras, P. R. (2020). Study of the effect of Eucalyptus globulus lignin and Schinus terebinthifolius tannin extract on water in oil emulsions of heavy oil, Fuel, 264, 116816, doi: 10.1016/j.fuel.2019.116816. ##
  25. Carneiro, G. F., Silva, R. C., Barbosa, L. L., Freitas, J. C. C., Sad, CMS., Tose, L. V., Vaz, B. G., Romão, W., Castro, E. V. R., Neto, A. C. and Lacerda, V. (2015). Characterisation and selection of demulsifiers for water-in-crude oil emulsions using low field 1H NMR and ESI-FT-ICR MS, Fuel, 140, 762-769, doi: 10.1016/j.fuel.2014.10.020. ##
  26. ASTM D4377-00 (2000) Standard test method for water in crude oils by potentiometric Karl Fischer titration, West Conshohocken, PA: ASTM International, doi: 10.1520/D4377-00R11.2. ##
  27. Thomas, J. E. (2001). Petroleum Engineering Fundamentals, 1st edition, Rio de Janeiro: Interscience, 264. ##
  28. ASTM D5002-99 (1999) Standard test method for density and relative density of crude oils by digital density analyser. West Conshohocken, PA: ASTM International, doi: 10.1520/D4327-11. ##
  29. ASTM D1250-08 (2008) Standard guide for use of the petroleum measurement tables, West Conshohocken, PA: ASTM International, doi: 10.1520/D1250-08R13E01.2. ##
  30. ISO 12185:1996 (1996) Crude petroleum and petroleum products––Determination of density-oscillating U-tube method. Geneva: International Organization for Standardization (ISO). ##
  31. ASTM D664-17 (2017) Standard test method for acid number of petroleum products by potentiometric titration. West Conshohocken, PA: ASTM International, doi: 10.1520/D0664-11A. ##
  32. ASTM D4402 (2015) Standard test method for measuring the viscosity of mold powders above their melting point using a rotational viscometer. West Conshohocken, PA: ASTM International, doi: 10.1520/D4402. ##
  33. ASTM D6560-12 (2013) Standard test method for determination of asphaltenes (heptane insolubles) in crude and petroleum products. West Conshohocken, PA: ASTM International, doi: 10.1520/D6560-12.2. ##
  34. ASTM D2549-02 (2002) Standard test method for separation of representative aromatics and nonaromatics fractions of high-boiling oils by elution chromatography. West Conshohocken, PA: ASTM International, doi: 10.1520/D2549-02R12.2. ##
  35. Skoog, D. A. (2014). Fundamentals of analytical chemistry, 8th edition, São Paulo: Cengage Learning, 254 (in Portuguese). ##
  36. Schramm, L. L. (2006). Emulsions, foams and suspensions: fundamentals and applications, 1st edition, Wenheim: Wiley VCH, 202. ##
  37. Arashiro, E. Y. and Demarquette, N. R. (1999). Use of the Pendant Drop Method to Measure Interfacial Tension between Molten Polymers, Materials Research, 2, 23-32. doi: 10.1590/S1516-14391999000100005. ##
  38. Hiemenz, P. C. and Rajagopalan, R. (1997). Principles of colloid and surface chemistry, 3th edition, New York and Basel: CRC Press. ##
  39. Drelich, J., Fang, C., White, C. L. (2002). Measurement of interfacial tension in fluid-fluid systems, Encyclopedia of Surface and Colloid Science (3rd edition), Marcel Dekker Inc, 3152-66. ##
  40. Farah, M. A. (2012). Petroleum and its derivates, 1st edition, Rio de Janeiro: LTC, 43, (in Portuguese). ##
  41. Fingas, M. and Fieldhouse, B. (2015). Water-in-oil emulsions: formation and prediction, Handbook Oil Spill Science Technology, 225–70. doi: 10.1002/9781118989982.ch8. ##
  42. Fingas, M. and Fieldhouse, B. (2009). Studies on crude oil and petroleum product emulsions: water resolution and rheology, Colloids Surfaces A: Physicochemical and Engineering Aspects, 333 (1–3), 67–81. doi: 10.1016/J.COLSURFA.2008.09.02. ##
  43. Vogel, A. I. (1981). Qualitative analytical chemistry, 5th edition, São Paulo: Mestre Jou, 22 (in Portuguese). ##
  44. Brown, T. L. (2004). Chemistry the central science, 9th edition, São Paulo: Pearson Pretice Hall, 592 (in Portuguese).
  45. Collins, K. D. (2006). Ion hydration: implications for cellular function, Polyelectrolytes, and Protein Crystallization, Biophysical Chemistry, 119 (3), 271–281. doi: 10.1016/J.BPC.2005.08.010. ##
  46. Vlachy, N., Jagoda-Cwiklik, B., Vácha, R., Touraud, D., Jungwirth, P. and Kunz, W. (2009). Hofmeister series and specific interactions of charged headgroups with aqueous ions, Advances in Colloid and Interface Science, 146 (1–2), 42–47. doi: 10.1016/J.CIS.2008.09.010. ##
  47. Lo Nostro, P., Ninham, B. W., Milani, S., Lo Nostro, A., Pesavento, G. and Baglioni, P. (2006). Hofmeister effects in supramolecular and biological systems, Biophysical Chemistry, 124 (3), 208–213. doi: 10.1016/J.BPC.2006.04.004.
  48. Speight, J. G. (2001). Handbook of petroleum product analysis, New York, USA: Wiley Intercience, 241. ##
  49. Speight, J. G. (2006). The chemistry and technology of petroleum, 4th edition, New York: CRC Press, 227-390. ##
  50. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water, Industrial & Engineering Chemistry Research, 56, 14362-14368. doi: 10.1021/acs.iecr.7b03331. ##
  51. Poteau, S., Argillier, J. F., Langevin, D., Pincet, F. and Perez, E. (2005). Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil−water interface, Energy and Fuels, 19, 4, 1337–1341, doi: 10.1021/EF0497560. ##
  52. Arla, D., Sinquin, A., Palermo, T., Hurtevent, C., Gracia, A. and Dicharry, C. (2007). Influence of pH and water content on the type and stability of acidic crude oil emulsions, Energy and Fuels, 21, 3, 1337–1342, doi: 10.1021/ef060376j. ##
  53. Hutin, A., Argillier, J. F. and Langevin, D. (2014). Mass transfer between crude oil and water, Part 1: Effect of Oil Components, Energy and Fuels, 28, 12, 7331–7336, doi: 10.1021/ef501751b. ##
  54. Daaou, M. and Bendedouch, D. (2012). Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion, Journal of Saudi Chemical Society, 16, 333–337, doi: 10.1016/j.jscs.2011.05.015. ##
  55. Tan, X., Fenniri, H. and Gray. M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding, Energy & Fuels, 23, 3687–3693, doi: 10.1021/EF900228S. ##
  56. Cloud, R.W., Marsh, S. C., Ramsey, B. L., Pultz, R. A. and Poindexter, M. K. (2007). Salt spheres: Inorganic structures isolated from petroleum-based emulsions, Energy & Fuels, 21, 1350–1357, doi: 10.1021/EF060431O. ##
  57. Palizdan, S., Riazi, M., Malayeri, M. R. and Torabi, F. (2021). Stability of w/o emulsions for MgSO4 and Na2CO3 solutions under dynamic and static conditions, The Canadian Journal of Chemical Engineering, 99, 4, 971–985, doi: 10.1002/CJCE.23907. ##
  58. Plasencia, J., Pettersen and B., Nydal, O. J. (2013). Pipe flow of water-in-crude oil emulsions: effective viscosity, inversion point and droplet size distribution, Journal of Petroleum Science and Engineering, 101, 35–43, doi: 10.1016/J.PETROL.2012.11.009. ##
  59. Robinson, J. B., Strottmann, J. M. and Stellwagen, E. (1981). Prediction of neutral salt elution profiles for affinity chromatography, proceedings of the national academy os sciences of the USA, 78, 4, 2287–2291, doi: 10.1073/PNAS.78.4.2287. ##
  60. Collins, K. D. (2004). Ions from the hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods, 34, 3, 300–311, doi: 10.1016/j.ymeth.2004.03.021. ##