Experimental study on viscosity reduction of Iranian heavy export crude oil by using imidazolium based ionic liquids supported on ZIF-8 organic framework

Document Type : Research Paper


1 Department of Chemistry, Semnan University, Semnan, Iran

2 Oil Refining Research Division, Research Institute of Petroleum Industry, (RIPI), Tehran, Iran


Chemical - Thermal Technology is used to upgrade the quality and to decrease the viscosity of Iranian extra-heavy crude oil in atmospheric pressure. In this present study, quality preparation of [OMIM][NTf2]-ZIF-8 (IL@ZIF-8) nanostructures were performed solvothermal by using an oil-soluble long chain Ionic Liquids, [OMIM][NTf2] and a zeolitic imidazolate framework, ZIF-8. This complex was used in the thermal cracking of heavy oil as a chemical additive. The injection of a small amount of the IL@ZIF-8 into extra-heavy oil caused the production of gaseous compounds, naphtha, middle distillates, lubricating oil,  and tar. The viscosity measurement results show an evident viscosity reduction of 91% for extra-heavy oil after chemical-thermal cracking at 370 °C for a maximum of 120 min. The technique is ideally suited for cracking extra-heavy Iranian Crude oils, such as in the Nowrooz-Soroosh oilfields. To our knowledge, no report has been found about the chemothermal cracking of heavy crude oils, especially by using IL@ZIF-8 metal-organic frameworks.


  1. Zhao, F., Liu, Y., Lu, N., Xu, T., Zhu, G., & Wang, K. (2021). A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Reports, 7, 4249-4272,. doi.org/10.1016/j.egyr.2021.06.094. ##
  2. Li, Y., Wang, Z., Hu, Z., Xu, B., Li, Y., Pu, W., & Zhao, J. (2021). A review of in situ upgrading technology for heavy crude oil. Petroleum, 7(2), 117-122, doi.org/10.1016/j.petlm.2020.09.004. ##
  3. https://www.eia.gov/international/content/analysis/countries_long/Iran/pdf/iran_exe.pdf ( DOA: 2022). ##
  4. Morelos Santos, O., Reyes, de la Torre, A. I., Schacht-Hernandez, P., Portales-Martinez, B., Soto-Escalante, I., Mendoza-Martinez, A. M., Mendoza-Cruz, R., Velazquez-Salazar, J. J., Jose-Yacaman, M. (2019). NiFe2O4 nanocatalyst for heavy crude oil upgrading in low hydrogen/feedstock ratio, Catalyst Today, 12517. doi.org/10.1016/j.cattod.2019.10.012. ##
  5. Hanyong, L., Kexin, C., Ling, J., Leilei, W. & Bo, Y. (2018). Experimental study on the viscosity reduction of heavy oil with nanocatalyst by microwave heating under low reaction temperature, Journal of Petroleum Science and Engineering, 177, 374-382, doi.org/10.1016/j.petrol.2018.06.078. ##
  6. Chunhao, W., Ruihe, W., Weidong, Z. & Luopeng, L. (2019). Experimental study on viscosity reduction of heavy oil by hydrogen donors using a cavitating jet, RSC Avances, 9, 2509, 9, 2509-2515 doi:10.1039/C8RA08087A (Paper) RSC Adv. ##
  7. Wang, W., Cui, J., Wu, S., Cheng, Y., Wang, G., & Zhang, H. (2019). Isolation and optimization of compound bacteria for wax content and particle size, Journal of Petroleum Science and Technology, 9(4), 53-62, doi:10.22078/JPST.2019.3499.1563. ##
  8. Chen, G., Zhou, Z., Shi, X., Zhang, X., Dong, S., & Zhang, J. (2021). Synthesis of alkylbenzenesulfonate and its behavior as flow improver in crude oil, Fuel, 288, 119644, doi.org/10.1016/j.fuel.2020.119644. ##
  9. Chen, Q., Shan, Y., Liu, H., Zhao, B., & Cao, J. (2020). Upgrading of Venezuela extra-heavy oil vacuum residue by two-step thermal treatment. Petroleum Science and Technology, 38(3), 166-169, doi.org/10.1080/10916466.2019.1697285. ##
  10. Taghili, N., Manteghian, M., & Jafari, A. (2020). Novel preparation of MoO3/γ-Al2O3 nanocatalyst: application in extra-heavy oil visbreaking at atmospheric pressure, Applied Nanoscience, 10(5), 1603-1613, doi.org/10.1007/s13204-020-01271-8. ##
  11. Razavian, M., & Fatemi, S. (2021). Catalytic evaluation of metal azolate framework-6 in pristine and metal doped modes in upgrading heavy residual fuel oil, Journal of Analytical and Applied Pyrolysis, 156, 105093, doi.org/10.1016/j.jaap.2021.105093. ##
  12. Głowniak, S., Szczęśniak, B., Choma, J., & Jaroniec, M. (2021). Mechanochemistry: Toward green synthesis of metal–organic frameworks, Materials Today, 46, 109-124, doi.org/10.1016/j.mattod.2021.01.008. ##
  13. Shet, S. P., Priya, S. S., Sudhakar, K., & Tahir, M. (2021). A review on current trends in potential use of metal-organic framework for hydrogen storage, International Journal of Hydrogen Energy, 46(21), 11782-11803, doi.org/10.1016/j.ijhydene.2021.01.020. ##
  14. Zhao, D. L., Feng, F., Shen, L., Huang, Z., Zhao, Q., Lin, H., & Chung, T. S. (2023). Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation, Chemical Engineering Journal, 454, 140447, doi.org/10.1016/j.cej.2022.140447. ##
  15. Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., & Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances, 5(60), 48433-48441, 5, 48433-48441, doi:10.1039/C5RA04033G (Paper) RSC Adv. ##
  16. Zunita, M., Natola, W., David, M., & Lugito, G. (2022). Integrated metal organic framework/ionic liquid-based composite membrane for CO2 separation, Chemical Engineering Journal Advances, 11, 100320, doi.org/10.1016/j.ceja.2022.100320. ##
  17. Nalesso, S., Varlet, G., Bussemaker, M. J., Sear, R. P., Hodnett, M., Monteagudo-Olivan, R., Sebastian, V., Coronas, J. & Lee, J. (2021). Sonocrystallisation of ZIF-8 in water with high excess of ligand: effects of frequency, power and sonication time, Ultrasonics Sonochemistry, 76,105616, doi.org/10.1016/j.ultsonch.2021.105616. ##
  18. Liu, S., Liu, J., Hou, X., Xu, T., Tong, J., Zhang, J., Ye B. & Liu, B. (2018). Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir, 34(12), 3654-3660, doi.org/10.1021/acs.langmuir.7b04212. ##
  19. Mehdizadeh, A., Masoumi, F., Ahmadi, A. N., Shekarriz, M., & Ghamami, S. (2022). Enhancement of efficiency of water removal from bangestan crude oil by silica nanoparticles using imidazolium-based ionic liquids, Journal of Petroleum Science and Technology, 12(2), 51-58, doi:10.22078/JPST.2023.4855.1813. ##
  20. Taheri, M., Bernardo, I. D., Lowe, A., Nisbet, D. R., & Tsuzuki, T. (2020). Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Crystal Growth & Design, 20(4), 2761-2773, doi.org/10.1021/acs.cgd.0c00129. ##
  21. Shoja, S. M. R., Abdouss, M., Beigi, A. A. M., & Saeedirad, R. (2022). Synthesis and application of ionic‎ liquid/ZIF-8 as a pH-sensitive nanocarrier for slow release of 1-(2-‎ hydroxy ethyl)-3-methylimidazolium‎ dicyanamide corrosion inhibitor in neutral chloride solution. Materials Today Communications, 33, 104829, doi.org/10.1016/j.mtcomm.2022.104829. ##
  22. Hazrati, N., Abdouss, M., Miran Beigi, A. A., Pasban, A. A., & Rezaei, M. (2017). Physicochemical properties of long chain alkylated imidazolium based chloride and bis (trifluoromethanesulfonyl) imide ionic liquids, Journal of Chemical & Engineering Data, 62(10), 3084-3094, doi.org/10.1021/acs.jced.7b00242. ##
  23. Zunita, M., Natola, W., David, M., & Lugito, G. (2022). Integrated metal organic framework/ionic liquid-based composite membrane for CO2 Chemical Engineering Journal Advances, 11, 100320, doi.org/10.1016/j.ceja.2022.100320. ##
  24. Xiong, Y., Deng, N., Wu, X., Zhang, Q., Liu, S., & Sun, G. (2022). De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration. Separation and Purification Technology, 285, 120321, doi.org/10.1016/j.seppur.2021.120321. ##
  25. Gray, M. R., Ayasse, A. R., Chan, E. W., & Veljkovic, M. (1995). Kinetics of hydrodesulfurization of thiophenic and sulfide sulfur in Athabasca bitumen, Energy & Fuels, 9(3), 500-506, doi.org/10.1021/ef00051a015. ##
  26. Anand, M., Sibi, M. G., Verma, D., & Sinha, A. K. (2014). Anomalous hydrocracking of triglycerides over CoMo-catalyst–influence of reaction intermediates, Journal of Chemical Sciences, 126, 473-480, doi.org/10.1007/s12039-014-0587-y. ##