Improving Heat Ageing, Mechanical Properties, and Thermal Conductivity of Silicon Rubber by Surface Modification of Iron Oxide and Field Testing of Silicon Rubber O-rings

Document Type : Research Paper

Authors

1 Advanced Polymer Materials and Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

Silicone rubber (SR) compounds were prepared to apply O-ring at high temperatures. Silane surface modified Fe2O3 and unmodified Fe2O3 were added to the SR compounds, and the compounds were assessed by analyses of FESEM (Field-Emission Scanning Electron Microscopy) (for morphology) and TGA and tests of thermal conductivity at different temperatures, thermal aging, hardness, tensile and compression set. Moreover, O-rings were prepared and field tested in an online Gas Chromatograph (GC) of Chemical Analysis in one Petrochemical Company under the pressure of 7 bar and temperature of 180 °C. The obtained results show that the thermal conductivity, aging resistance, thermal stability, and mechanical properties of SR decreased in the following order: surface-modified Fe2O3-filled SR, unmodified Fe2O3-filled SR, and SR without Fe2O3. Overuse of Fe2O3 reduced mechanical properties and hardened processability. The thermal conductivity of SR filled with varying volume percent of modified and unmodified Fe2O3 decreased as the temperature increased. Using surface-modified Fe2O3 increased thermal conductivity and improved aging resistance, ultimately enhancing thermal resistance. It is particularly beneficial for the production of O-rings resistant to high temperatures. The field-test results confirmed that the O-rings were compatible with high-temperature conditions. Furthermore, after testing, the O-rings exhibited low volume swelling and a smooth surface without any cracks, blisters, or unevenness.

Keywords


  1. De Jaeger R and Gleria M. Inorganic polymers. Nova Science Pub Inc, 1th, 2007. ##
  2. Hannifin P. Parker O-Ring Handbook. Parker Hannifin Corp, Cleveland, 50th, 1957, www.parkerorings.com. (Accessed 2017). ##
  3. Whitlock J. The Seal Man’s O-Ring Handbook, EPM. Inc, Stockbridge, GA. 2004. ##
  4. Ramirez I, Jayaram S and Cherney EA. Thermal conductivity of silicone rubber nanocomposites. ConferencePresentation. 2009.http://electrostaticanswers.com/2009ESJC/Session06/2009%20Ramirez%20Thermal%20Conductivity%20of%20Silicone%20Rubber%20Nanocomposites.pdf (Accessed 2017). ##
  5. Silva, V. P., Paschoalino, M. P., Goncalves, M. C., Felisberti, M. I., Jardim, W. F., & Yoshida, I. V. P. (2009). Silicone rubbers filled with TiO2: Characterization and photocatalytic activity. Materials Chemistry and Physics, 113(1), 395-400, doi.org/10.1016/j.matchemphys.2008.07.104. ##
  6. Kashani, M. R., Javadi, S., & Gharavi, N. (2010). Dielectric properties of silicone rubber-titanium dioxide composites prepared by dielectrophoretic assembly of filler particles. Smart Materials and Structures, 19(3), 035019. ##
  7. Bai, L., Bai, Y., & Zheng, J. (2017). Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane. Journal of Materials Science, 52, 7516-7529. ##
  8. Bai, L., & Zheng, J. (2016). Synergistic effect of iron oxide modified carbon nanotubes on the thermal stability of silicone rubber under different atmospheres. Journal of Thermal Analysis and Calorimetry, 123, 1281-1291. ##
  9. Zhang, X., Zhang, Q., & Zheng, J. (2014). Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Composites science and technology, 99, 1-7, doi.org/10.1016/j.compscitech.2014.05.003. ##
  10. Wang, Z., Li, H., & Zheng, J. (2016). TG–MS study on the effect of multi-walled carbon nanotubes and nano-Fe2O3 on thermo-oxidative stability of silicone rubber. Journal of Thermal Analysis and Calorimetry, 126, 733-742. ##
  11. Li, H., Tao, S., Huang, Y., Su, Z., & Zheng, J. (2013). The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives, Composites Science and Technology, 76, 52-60, doi.org/10.1016/j.compscitech.2012.12.019. ##
  12. Xie, C., Liu, S., & Yuan, C. (2014). Influence of Fe 2 O 3 on Properties of High-temperature Vulcanized Silicone Rubber for Composite Insulators. High Voltage Engineering, 40(12), 3674-3679. ##
  13. Lu, Q. F., Li, X. B., Zhang, H. L., Xie, B. H., & Zhang, X. Y. (2014). Preparation and Thermal-resistant performance of silicon rubber. Advanced Materials Research, 1033, 1207-1212, doi.org/10.4028/www.scientific.net/AMR.1033-1034.1207. ##
  14. Arkles B. Tailoring surfaces with silanes. Chemtech 1977; 7: 766-78. ##
  15. Farahani, A., Jamshidi, M., & Foroutan, M. (2023). Effects of functionalization and silane modification of hexagonal boron nitride on thermal/mechanical/morphological properties of silicon rubber nanocomposite. Scientific Reports, 13(1), 11915. ##
  16. Xue, Y., Li, X., Wang, H., Zhao, F., Zhang, D., & Chen, Y. (2019). Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubbercomposites. Materials & Design, 165, 107580, doi.org/10.1016/j.matdes.2018.107580. ##
  17. Lee, W., & Kim, J. (2021). Improved thermal conductivity of poly (dimethylsiloxane) composites filled with well-aligned hybrid filler network of boron nitride and graphene oxide. Polymer Testing, 104, 107402, doi.org/10.1016/j.polymertesting.2021.107402. ##
  18. Farahani, A., Jamshidi, M., & Foroutan, M. (2023). Improving thermal/electrical properties of silicone rubber nanocomposite using exfoliated boron nitride nano sheets made by an effective/novel exfoliating agent. Materials & Design, 229, 111935, doi.org/10.1016/j.matdes.2023.111935. ##
  19. Han, R., Li, Y., Zhu, Q., & Niu, K. (2022). Research on the preparation and thermal stability of silicone rubber composites: A review. Composites Part C: Open Access, 8, 100249, doi.org/10.1016/j.jcomc.2022.100249. ##
  20. Heidarian, J., Babanalbandi, A., & Hoseinkhani, H. (2011). Polyethylene Coating With Improved Resistance To Cathodic Disbonding Using Surface Chemical Treatment With Organosilanes. ##
  21. Shentu, B., Gan, T., & Weng, Z. (2009). Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber. Journal of applied polymer science, 113(5): 3202-3206, doi.org/10.1002/app.30054. ##
  22. Gan, T. F., Shentu, B. Q., & Weng, Z. X. (2008). Modification of CeO2 and its effect on the heat-resistance of silicone rubber, Chinese Journal of Polymer Science, 26(04): 489-494. ##
  23. Huang, X., Fang, X., Lu, Z., & Chen, S. (2009). Reinforcement of polysiloxane with superhydrophobic nanosilica, Journal of materials science, 44, 4522-4530. ##
  24. Dow Co. A Guide to Silane Solution Mineral and Filler Treatments. Available from URL: https://www.azom.com/article.aspx?ArticleID=6774 (Accessed 2023). ##
  25. Ikaev, A. M., Mingalyov, P. G., & Lisichkin, G. V. (2007). Chemical modification of iron oxide surface with organosilicon and organophosphorous compounds. Colloid Journal, 69, 741-746. ##
  26. Arkles B. Hydrophobicity, Hydrophilicity, and Silane Surface Modification Available from URL:  gelest.com, (Accessed 2023). ##
  27. Dow Co. A guide to silane solutions: silane coupling agents. Available from URL: https://docplayer.net/23884441-A-guide-to-silane-solutions-silane-coupling-agents.html. (Accessed 2023). ##
  28. Arkles B. Tailoring surfaces with silanes. Chemtech 1977; 7: 766-78. ##
  29. Hu, Y. H., Chen, C. Y., & Wang, C. C. (2004). Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites, Polymer Degradation and Stability, 84(3): 545-553, doi.org/10.1016/j.polymdegradstab.2004.02.001. ##
  30. He, Y., Chen, Z. C. and Ma, L. X. (2010). Thermal conductivity and mechanical properties of silicone rubber filled with different particle sized SiC, Adv Mat Res Trans Tech Publ, 137-42. ##
  31. Landel, R. F., and Nielsen, L. E. (1993). Mechanical properties of polymers and composites. CRC press.
  32. Silicon Co. SE60THT Data sheet. Available from URL: www.silicon.co.uk. (Accessed 2023). ##
  33. Mu, Q., Feng, S., & Diao, G. (2007). Thermal conductivity of silicone rubber filled with ZnO. Polymer composites, 28(2), 125-130, doi.org/10.1002/pc.20276. ##
  34. Mohammadi-Rovshandeh, J., Mohammadikhah, R., & Asadi-Malekshah, R. (2016). Thermal-oxidative Degradation of PGA, PLLA, and Random Binary PLLA-PGA Copolymers. Journal of Petroleum Science and Technology, 6(2), 66-83, doi: 10.22078/jpst.2016.665. ##
  35. Zhou, W., Qi, S., Tu, C., Zhao, H., Wang, C., and Kou, J. (2007). Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber, Journal of Applied Polymer Science, 104(2): 1312-1318, doi.org/10.1002/app.25789. ##
  36. Meyer, L., Jayaram, S. and Cherney, E. A. (2004). Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test, IEEE Transactions on Dielectrics and Electrical Insulation, 11(4): 620-630, doi: 10.1109/TDEI.2004.1324352. ##
  37. Zhou, W. Y., Qi, S. H., Zhao, H. Z., and Liu, N. L. (2007). Thermally conductive silicone rubber reinforced with boron nitride particle, Polymer composites, 28(1): 23-28, doi.org/10.1002/pc.20296. ##
  38. Kemaloglu, S., Ozkoc, G., and Aytac, A. (2010). Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites, Thermochimica Acta, 499(1-2): 40-47, doi.org/10.1016/j.tca.2009.10.020. ##
  39. Sim, L., Ramanan, S. R., Ismail, H., Seetharamu, K. N., and Goh, T. J. (2005). Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochimica acta, 430(1-2): 155-165, doi.org/10.1016/j.tca.2004.12.024. ##
  40. Zhou, W., Qi, S., Tu, C., and Zhao, H. (2007). Novel heat-conductive composite silicone rubber. Journal of Applied Polymer Science, 104(4), 2478-2483, doi.org/10.1002/app.25479. ##
  41. Momen, G., & Farzaneh, M. (2011). Survey of micro/nano filler use to improve silicone rubber for outdoor insulators, Reviews on Advanced Materials Science, 27(1): 1-13. ##
  42. Xu, Y., Chung, D. D. L. and Mroz, C. (2001). Thermally conducting aluminum nitride polymer-matrix composites, Composites Part A: Applied Science and Manufacturing, 32(12): 1749-1757, doi.org/10.1016/S1359-835X(01)00023-9. ##