Experimental and DFT Studies on the Two Imidazolium-based Ionic Liquids as Green Corrosion Inhibitors for A516-GR70 Carbon Steel in 3.5 wt.% NaCl Solution Saturated with CO2

Document Type : Research Paper


Research Institute of Petroleum Industry (RIPI), Tehran, Iran


1-Dodecyl-3-methylimidazolium chloride (DDMIC) and 1-(Naphtymethyl)-3-methylimidazolium chloride (NMIC) were synthesized, and their adsorption effects on A516-Gr70 steel were investigated as a green corrosion inhibitor in 3.5 wt.% NaCl solution saturated with CO2 at 25 °C. Potentiodynamic polarization (PDP), Scanning Kelvin probe (SKP), and electrochemical impedance spectroscopy (EIS) techniques were used to study the inhibition properties of these compounds in different concentrations. The main advantages of the two studied inhibitors, i.e., DDMIC and NMIC, are environment friendly; moreover, the inhibition performance of DDMIC is excellent, and it can reach 97% protection performance in a sweet corrosion environment. SKP studied the effects of these inhibitors on the Volta potential of the carbon steel surface. SKP analysis revealed that the trend of metal surface coverage by DDMIC can be traced via Volta’s potential results. Based on SKP results, the real work function of metal surface atoms was calculated. Quantum chemical parameters of inhibitor molecules were studied by integrating density functional theory (DFT) and SKP methods. The integration results described the electron transfer mechanism during the adsorption process. Ultimately, SKP and DFT results revealed that the aromatic ring of NMIC affected its adsorption on the metal surface.


  1. Kahyarian, A., Achour, M., & Nesic, S. (2017). Trends in oil and gas corrosion research and technologies, 149-190.##
  2. Krzemień, A., Więckol-Ryk, A., Smoliński, A., Koteras, A., & Więcław-Solny, L. (2016). Assessing the risk of corrosion in amine-based CO2 capture process, Journal of Loss Prevention in the Process Industries, 43, 189-197, doi.org/10.1016/j.jlp.2016.05.020. ##
  3. Kahyarian, A., Singer, M., & Nesic, S. (2016). Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review, Journal of Natural Gas Science and Engineering, 29, 530-549, doi.org/10.1016/j.jngse.2015.12.052. ##
  4. Wang, B., Du, M., Zhang, J., & Gao, C. J. (2011). Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion, Corrosion Science, 53(1), 353-361, doi.org/10.1016/j.corsci.2010.09.042. ##
  5. Koch, G. (2017). Cost of corrosion, Trends in Oil and Gas Corrosion Research and Technologies, 3-30, doi.org/10.1016/B978-0-08-101105-8.00001-2. ##
  6. Yaro, A. S., Abdul-Khalik, K. R., & Khadom, A. A. (2015). Effect of CO2 corrosion behavior of mild steel in oilfield produced water, Journal of Loss Prevention in the Process Industries, 38, 24-38, doi.org/10.1016/j.jlp.2015.08.003. ##
  7. Jevremović, I., Singer, M., Achour, M., Blumer, D., Baugh, T., Misković-Stanković, V., & Nes̆ić, S. (2013). A novel method to mitigate the top-of-the-line corrosion in wet gas pipelines by corrosion inhibitor within a foam matrix, Corrosion, 69(2), 186-192, doi.org/10.5006/0617. ##
  8. Chen, L., Lu, D., & Zhang, Y. (2022). Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review, Materials, 15(6), 2023, doi.org/10.3390/ma15062023. ##
  9. Xhanari, K., Wang, Y., Yang, Z., & Finšgar, M. (2021). A review of recent advances in the inhibition of sweet corrosion, The Chemical Record, 21(7), 1845-1875, doi.org/10.1002/tcr.202100072. ##
  10. Farelas, F., & Ramirez, A. (2010). Carbon dioxide corrosion inhibition of carbon steels through bis-imidazoline and imidazoline compounds studied by EIS. International Journal of Electrochemical Science, 5(6), 797-814, doi.org/10.1016/S1452-3981(23)15324-7. ##
  11. Singh, A., Ansari, K. R., Quraishi, M. A., & Kaya, S. (2020). Theoretically and experimentally exploring the corrosion inhibition of N80 steel by pyrazol derivatives in simulated acidizing environment. Journal of Molecular Structure, 1206, 127685, doi.org/10.1016/j.molstruc.2020.127685. ##
  12. Fawzy, A., Farghaly, T. A., El-Ghamry, H. A., & Bawazeer, T. M. (2020). Investigation of the inhibition efficiencies of novel synthesized cobalt complexes of 1, 3, 4-thiadiazolethiosemicarbazone derivatives for the acidic corrosion of carbon steel, Journal of Molecular Structure, 1203, 127447, doi.org/10.1016/j.molstruc.2019.127447. ##
  13. Zhang, Q. B., & Hua, Y. X. (2009). Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid, Electrochimica Acta, 54(6), 1881-1887, doi.org/10.1016/j.electacta.2008.10.025. ##
  14. Yang, D., Zhang, M., Zheng, J., & Castaneda, H. (2015). Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: the effect of pH and surface pre-corrosion. RSC Advances, 5(115), 95160-95170, doi: 10.1039/C5RA14556B. ##
  15. Yang, D. (2016). Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation (Doctoral dissertation, University of Akron). ##
  16. Likhanova, N. V., Domínguez-Aguilar, M. A., Olivares-Xometl, O., Nava-Entzana, N., Arce, E., & Dorantes, H. (2010). The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment, Corrosion Science, 52(6), 2088-2097, doi.org/10.1016/j.corsci.2010.02.030. ##
  17. Yousefi, A., Aslanzadeh, S. A., & Akbari, J. (2018). Experimental and DFT studies of 1-methylimidazolium trinitrophenoxide as modifier for corrosion inhibition of SDS for mild steel in hydrochloric acid, Anti-Corrosion Methods and Materials, 65(1), 107-122, ISSN: 0003-5599. ##
  18. Sim, S., Cole, I. S., Choi, Y. S., & Birbilis, N. (2014). A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes, International Journal of Greenhouse Gas Control, 29, 185-199, doi.org/10.1016/j.ijggc.2014.08.010. ##
  19. Finšgar, M., & Jackson, J. (2014). Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review, Corrosion Science, 86, 17-41, doi.org/10.1016/j.corsci.2014.04.044. ##
  20. Cen, H., Cao, J., Chen, Z., & Guo, X. (2019). 2-Mercaptobenzothiazole as a corrosion inhibitor for carbon steel in supercritical CO2-H2O condition, Applied Surface Science, 476, 422-434, doi.org/10.1016/j.apsusc.2019.01.113. ##
  21. Al-Shihry, S. S., Sayed, A. R., & Abd El-lateef, H. M. (2020). Design and assessment of a novel poly (urethane-semicarbazides) containing thiadiazoles on the backbone of the polymers as inhibitors for steel pipelines corrosion in CO2-saturated oilfield water, Journal of Molecular Structure, 1201, 127223, doi.org/10.1016/j.molstruc.2019.127223. ##
  22. Souza, L., Pereira, E., Matlakhova, L., Nicolin, V. A., Monteiro, S. N., & de Azevedo, A. R. (2023). Ionic liquids as corrosion inhibitors for carbon steel protection in hydrochloric acid solution: A first review, Journal of Materials Research and Technology, 22, 2186-2205, doi.org/10.1016/j.jmrt.2022.12.066. ##
  23. Ganjoo, R., Bharmal, A., Sharma, S., Thakur, A., Assad, H., & Kumar, A. (2022, May). Imidazolium based ionic liquids as green corrosion inhibitors against corrosion of mild steel in acidic media, In Journal of Physics: Conference Series, 2267(1), 012023, IOP Publishing, doi:10.1088/1742-6596/2267/1/012023. ##
  24. Li, W., Tan, B., Zhang, S., Guo, L., Ji, J., Yan, M., & Wang, R. (2022). Insights into triazole derivatives as potential corrosion inhibitors in CMP process: Experimental evaluation and theoretical analysis, Applied Surface Science, 602, 154165, doi.org/10.1016/j.apsusc.2022.154165. ##
  25. Verma, C., Ebenso, E. E., & Quraishi, M. A. (2017). Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview, Journal of Molecular Liquids, 233, 403-414, doi.org/10.1016/j.molliq.2017.02.111. ##
  26. Taghavikish, M., Dutta, N. K., & Roy Choudhury, N. (2017). Emerging corrosion inhibitors for interfacial coating, Coatings, 7(12), 217, doi.org/10.3390/coatings7120217. ##
  27. Liu, L. & Li G. (2010). Investigation of the Surface potential on iron nanoparticles during the corrosion by atomic force microscopy (AFM)and kelvin probe force microscopy (KFM) Applied physics letters, 96: 981-993. ##
  28. Ramachandran, S. (2017). Corrosion inhibitors—advancements in testing, Trends in Oil and Gas Corrosion Research and Technologies, 455-469, doi.org/10.1016/B978-0-08-101105-8.00019-X. ##
  29. Popov, B. N., & Popov, B. N. (2015). Basics of corrosion measurements, Corrosion Engineering, 865, 181-237. ##
  30. Gerengi, H. (2018). The use of dynamic electrochemical impedance spectroscopy in corrosion inhibitor studies, Protection of Metals and Physical Chemistry of Surfaces, 54, 536-540. ##
  31. Melitz, W., Shen, J., Kummel, A. C., & Lee, S. (2011). Kelvin probe force microscopy and its application, Surface Science Reports, 66(1), 1-27, doi.org/10.1016/j.surfrep.2010.10.001. ##
  32. Finot, E., Leonenko, Y., Moores, B., Eng, L., Amrein, M., & Leonenko, Z. (2010). Effect of cholesterol on electrostatics in lipid− protein films of a pulmonary surfactant, Langmuir, 26(3), 1929-1935, doi.org/10.1021/la904335m. ##
  33. Grundmeier, G., Schmidt, W., & Stratmann, M. J. E. A. (2000). Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochimica Acta, 45(15-16), 2515-2533, doi.org/10.1016/S0013-4686(00)00348-0. ##
  34. Ebrahimi, G., Rezaei, F., & Neshati, J. (2017). Investigation on corrosion protection mechanism of polyaniline nanoparticles doped with phosphoric acid by scanning Kelvin probe and other electrochemical methods, Journal of the Taiwan Institute of Chemical Engineers, 70, 427-436, doi.org/10.1016/j.jtice.2016.11.007. ##
  35. Nazarov, A., Le Bozec, N., & Thierry, D. (2018). Scanning Kelvin Probe assessment of steel corrosion protection by marine paints containing Zn-rich primer, Progress in Organic Coatings, 125, 61-72, doi.org/10.1016/j.porgcoat.2018.08.024. ##
  36. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms, Journal of Chemistry, doi.org/10.1155/2017/3039817. ##
  37. Gómez, B., Likhanova, N. V., Domínguez-Aguilar, M. A., Martínez-Palou, R., Vela, A., & Gazquez, J. L. (2006). Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles, The Journal of Physical Chemistry B, 110(18), 8928-8934, doi.org/10.1021/jp057143y. ##
  38. Obot, I. B., Macdonald, D. D., & Gasem, Z. M. (2015). Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview, Corrosion Science, 99, 1-30, doi.org/10.1016/j.corsci.2015.01.037. ##
  39. Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies, Corrosion Science, 50(11), 2981-2992, doi.org/10.1016/j.corsci.2008.08.043. ##
  40. Dzyuba, S. V., Kollar, K. D., & Sabnis, S. S. (2009). Synthesis of imidazolium room-temperature ionic liquids. Exploring green chemistry and click chemistry paradigms in undergraduate organic chemistry laboratory, Journal of Chemical Education, 86(7), 856, doi.org/10.1021/ed086p856. ##
  41. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Revision A. & Wallingford CT (2018). Molecular modeling and synthesis of ethyl benzyl carbamates as possible ixodicide activity, Scientific Research Publishing, 7, 1. ##
  42. Zhang, C., Duan, H., & Zhao, J. (2016). Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a CO2-saturated brine solution, Corrosion Science, 112, 160-169, doi.org/10.1016/j.corsci.2016.07.018. ##
  43. Lebrini, M., Lagrenee, M., Vezin, H., Gengembre, L., & Bentiss, F. (2005). Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium, Corrosion Science, 47(2), 485-505, doi.org/10.1016/j.corsci.2004.06.001. ##
  44. Zhang, G., Chen, C., Lu, M., Chai, C., & Wu, Y. (2007). Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution, Materials Chemistry and Physics, 105(2-3), 331-340, doi.org/10.1016/j.matchemphys.2007.04.076. ##
  45. Charitha, B. P., & Rao, P. (2018). Environmentally benign green inhibitor to attenuate acid corrosion of 6061Aluminum-15%(v) SiC (P) composite, Journal of Industrial and Engineering Chemistry, 58, 357-368, doi.org/10.1016/j.jiec.2017.09.049. ##
  46. Alvarez, P. E., Fiori-Bimbi, M. V., Neske, A., Brandan, S. A., & Gervasi, C. A. (2018). Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution, Journal of Industrial and Engineering Chemistry, 58, 92-99, doi.org/10.1016/j.jiec.2017.09.012. ##
  47. El Adnani, Z., Mcharfi, M., Sfaira, M., Benzakour, M., Benjelloun, A. T., & Touhami, M. E. (2013). DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid, Corrosion Science, 68, 223-230, doi.org/10.1016/j.corsci.2012.11.020. ##
  48. Arjunan, V., Balamourougane, P. S., Mythili, C. V., Mohan, S., & Nandhakumar, V. (2011). Vibrational, nuclear magnetic resonance and electronic spectra, quantum chemical investigations of 2-amino-6-fluorobenzothiazole, Journal of Molecular Structure, 1006(1-3), 247-258, doi.org/10.1016/j.molstruc.2011.09.015. ##
  49. Danaee, I., Gholami, M., RashvandAvei, M., & Maddahy, M. H. (2015). Quantum chemical and experimental investigations on inhibitory behavior of amino–imino tautomeric equilibrium of 2-aminobenzothiazole on steel corrosion in H2SO4 solution, Journal of Industrial and Engineering Chemistry, 26, 81-94, doi.org/10.1016/j.jiec.2014.11.018. ##
  50. Jafari, H., Akbarzade, K., & Danaee, I. (2019). Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives, Arabian Journal of Chemistry, 12(7), 1387-1394, doi.org/10.1016/j.arabjc.2014.11.018. ##
  51. Farahati, R., Behzadi, H., Mousavi-Khoshdel, S. M., & Ghaffarinejad, A. (2020). Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies, Journal of Molecular Structure, 1205, 127658, doi.org/10.1016/j.molstruc.2019.127658. ##
  52. Atkins, P.W. (1990) Physisorption and chemisorption in Physical Chemistry, Twelfth edittion, Oxford Univercity Press, 1-976, ISBN: 9780198847816. ##
  53. Zhang, H. H., Gao, K., Yan, L., & Pang, X. (2017). Inhibition of the corrosion of X70 and Q235 steel in CO2-saturated brine by imidazoline-based inhibitor. Journal of Electroanalytical Chemistry, 791, 83-94, doi.org/10.1016/j.jelechem.2017.02.046. ##
  54. Senöz, C., Maljusch, A., Rohwerder, M., & Schuhmann, W. (2012). SECM and SKPFM Studies of the Local Corrosion Mechanism of Al Alloys–A Pathway to an Integrated SKP‐SECM System, Electroanalysis, 24(2), 239-245, doi.org/10.1002/elan.201100609. ##
  55. Nazarov, A., Le Bozec, N., & Thierry, D. (2018). Assessment of steel corrosion and deadhesion of epoxy barrier paint by scanning Kelvin probe, Progress in Organic Coatings, 114, 123-134, doi.org/10.1016/j.porgcoat.2017.09.016. ##
  56. Stratmann, M., & Streckel, H. (1990). On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique, Corrosion Science, 30(6-7), 681-696, doi.org/10.1016/0010-938X(90)90032-Z. ##
  57. Singh, A. K., & Rani, N. (2019). Scanning Kelvin probe study of steel/oil interfaces for corrosion evaluation, Materials and Corrosion, 70(7), 1162-1170, doi.org/10.1002/maco.201810577. ##
  58. Williams, G., McMurray, H. N., & Worsley, D. A. (2002). Cerium (III) inhibition of corrosion-driven organic coating delamination studied using a scanning Kelvin probe technique. Journal of the Electrochemical Society, 149(4), B154, doi: 10.1149/1.1457983. ##
  59. Wazzan, N. A., Al-Qurashi, O. S., & Faidallah, H. M. (2016). DFT/and TD-DFT/PCM calculations of molecular structure, spectroscopic characterization, NLO and NBO analyses of 4-(4-chlorophenyl) and 4-[4-(dimethylamino) phenyl]-2-oxo-1, 2, 5, 6-tetrahydrobenzo [h] quinoline-3-carbonitrile dyes. Journal of Molecular Liquids, 223, 29-47, doi.org/10.1016/j.molliq.2016.07.146. ##
  60. Fergachi, O., Benhiba, F., Rbaa, M., Touir, R., Ouakki, M., Galai, M., & Touhami, M. E. (2018). Experimental and theoretical study of corrosion inhibition of mild steel in 1.0 M HCl Medium by 2 (-4 (hloro phenyl-1H-benzo [d] imidazol)-1-yl) phenyl) methanone, Materials Research, 21, e20171038, doi.org/10.1590/1980-5373-MR-2017-1038 . ##
  61. Lv, B., Wu, K., Zhou, Z., & Jing, G. (2019). How did the corrosion inhibitor work in amino-functionalized ionic liquids for CO2 capture: Quantum chemical calculation and experimental. International Journal of Greenhouse Gas Control, 91, 102846, doi.org/10.1016/j.ijggc.2019.102846. ##
  62. Abd El-Lateef, H. M., Abu-Dief, A. M., & El-Gendy, B. E. D. M. (2015). Investigation of adsorption and inhibition effects of some novel anil compounds towards mild steel in H2SO4 solution: Electrochemical and theoretical quantum studies. Journal of Electroanalytical Chemistry, 758, 135-147, doi.org/10.1016/j.jelechem.2015.10.025. ##
  63. Kovačević, N., & Kokalj, A. (2011). DFT study of interaction of azoles with Cu (111) and Al (111) surfaces: role of azole nitrogen atoms and dipole–dipole interactions, The Journal of Physical Chemistry C, 115(49), 24189-24197, doi.org/10.1021/jp207076w. ##
  64. Kokalj, A. (2012). On the HSAB based estimate of charge transfer between adsorbates and metal surfaces, Chemical Physics, 393(1), 1-12, doi.org/10.1016/j.chemphys.2011.10.021. ##
  65. Zarrouk, A., Zarrok, H., Salghi, R., Hammouti, B., Bentiss, F., Touir, R., & Bouachrine, M. O. H. A. M. M. E. D. (2013). Evaluation of N-containing organic compound as corrosion inhibitor for carbon steel in phosphoric acid, Journal Mater Environ Science, 4(2), 177-192, ISSN: 2028-2508. ##
  66. Madkour, L. H., Kaya, S., Guo, L., & Kaya, C. (2018). ##
  67. Quantum chemical calculations, molecular dynamic (MD) simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: Bis–azo dye derivatives, Journal of Molecular Structure, 1163, 397-417, doi.org/10.1016/j.molstruc.2018.03.013. ##
  68. Singh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Lgaz, H., & Chung, I. M. (2020). Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium, Journal of Colloid and Interface Science, 560, 225-236, doi.org/10.1016/j.jcis.2019.10.040. ##
  69. Riviere, J.C.(1994) Work function of simple metals: Relation between theory and experiment, First edition, Acta Physica Polonica, New York, Decker, 1-205.
  70. Michaelson, H. B. (1977). The work function of the elements and its periodicity. Journal of Applied Physics, 48(11), 4729-4733, doi.org/10.1063/1.323539. ##
  71. Hałas, S. (2006). 100 years of work function. Materials Science-Poland, 24(4), 951-968. ##
  72. Ebrahimi, G., Neshati, J., & Rezaei, F. (2017). An investigation on the effect of H3PO4 and HCl-doped polyaniline nanoparticles on corrosion protection of carbon steel by means of scanning kelvin probe, Progress in Organic Coatings, 105, 1-8, doi.org/10.1016/j.porgcoat.2016.12.016. ##
  73. Ma, Q., Qi, S., He, X., Tang, Y., & Lu, G. (2017). 1, 2, 3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and computational chemistry studies. Corrosion Science, 129, 91-101, doi.org/10.1016/j.corsci.2017.09.025. ##
  74. Şahin, M., Gece, G., Karcı, F., & Bilgiç, S. J. J. A. E. (2008). Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium, Journal of Applied Electrochemistry, 38, 809-815. ##
  75. Yıldız, R. (2015). An electrochemical and theoretical evaluation of 4, 6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, 90, 544-553, doi.org/10.1016/j.corsci.2014.10.047. ##
  76. Holze, R. (2007). Table 3.1. Electrode potentials of zero charge of metal electrodes in contact with electrolyte solutions. Electrochemical Thermodynamics and Kinetics, 223-272. ##
  77. Popova, A., Sokolova, E., Raicheva, S., & Christov, M. (2003). AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives, Corrosion Science, 45(1), 33-58, doi.org/10.1016/S0010-938X (02)00072-0. ##
  78. Li, W., He, Q., Pei, C., & Hou, B. (2007). Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media. Electrochimica Acta, 52(22), 6386-6394, doi.org/10.1016/j.electacta.2007.04.077. ##
  79. Peterson, B., & Marzzacco, C. J. (2007). The effect of hydrocarbon chain length on the critical micelle concentration of cationic surfactants: An undergraduate physical chemistry experiment, Chemical Educ, 12, 80-84, doi: 10.1333/ s00897072009a, 12070080cm. ##
  80. Manamela, K. M., Murulana, L. C., Kabanda, M. M., & Ebenso, E. E. (2014). Adsorptive and DFT studies of some imidazolium based ionic liquids as corrosion inhibitors for zinc in acidic medium, International Journal of Electrochemical Science, 9(6), 3029-3046, doi.org/10.1016/S1452-3981(23)07989-0. ##
  81. Lide, D.R. (2007). CRC Handbook of Chemistry and Physics, 88th Edition, NY: Taylor & Francis Group.
  82. Khalil, S. M., Ali-Shattle, E. E., & Ali, N. M. (2013). A theoretical study of carbohydrates as corrosion inhibitors of iron, Zeitschrift für Naturforschung A, 68(8-9), 581-586, doi: 10.5560/ZNA.2013-0037. ##
  83. Chaitra, T. K., Mohana, K. N., Gurudatt, D. M., & Tandon, H. C. (2016). Inhibition activity of new thiazole hydrazones towards mild steel corrosion in acid media by thermodynamic, electrochemical and quantum chemical methods, Journal of the Taiwan Institute of Chemical Engineers, 67, 521-531, doi.org/10.1016/j.jtice.2016.08.013. ##
  84. Ali, S. A., El-Shareef, A. M., Al-Ghamdi, R. F., & Saeed, M. T. (2005). The isoxazolidines: the effects of steric factor and hydrophobic chain length on the corrosion inhibition of mild steel in acidic medium, Corrosion Science, 47(11), 2659-2678, doi.org/10.1016/j.corsci.2004.11.007. ##
  85. Quraishi, M. A., Rafiquee, M. Z. A., Khan, S., & Saxena, N. (2007). Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives, Journal of Applied Electrochemistry, 37, 1153-1162. ##
  86. Senthilkumar, A., Tharini, K., & Sethuraman, M. (2012). Steric effect of alkyl substituted piperidin-4-one oximes for corrosion control of mild steel in H2SO4 medium, Acta Physico-Chimica Sinica, 28(2), 399-406. ##
  87. Bahrami Panah, N., & Danaee, I. (2019). Effect of Structural Changes on Corrosion Inhibition Behavior of Synthesized N2O4 Imine Compounds for Steel Pipelines in Oil and Gas Wells, Journal of Chemical and Petroleum Engineering, 53(1), 1-10, doi: 10.22059/JCHPE.2019.232647.1193. ##
  88. Al-Sarawy, A. A., Fouda, A. S., & El-Dein, W. S. (2008). Some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium, Desalination, 229(1-3), 279-293, doi.org/10.1016/j.desal.2007.09.013. ##
  89. Lin, I. J., Moudgil, B. M., & Somasundaran, P. (1974). Estimation of the effective number of—CH 2-groups in long-chain surface active agents, Colloid and Polymer Science, 252, 407-414. ##
  90. Gao, J. (1996). Methods and applications of combined quantum mechanical and molecular mechanical potentials, Reviews in computational chemistry, 119-185, doi:10.1002/9780470125847. ##
  91. Keshavarz, R. F. (2013). Theoretical study of the solvent effect on the stability energies of pyrazole and pyrazoline, Journal of Physical and Theoretical Chemistry, 9,(4), 269-273. ##