Modification of Sodium Montmorillonite: Dependence of Silylation on Premixing Process

Document Type : Research Paper

Authors

Chemical, Polymer and Petrochemical Technology Development Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

Organic modification of hydrophilic sodium montmorillonite (Na+-MMT) is important for improving its compatibility with organic polymers. In the present research, (3-aminopropyl)triethoxysilane (APTES) was used to modify Na+-MMT. The effects on the basal spacing of Na+-MMT upon the premixing process with different mixing techniques were examined in detail. The resultant products (S-Mts) were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. For monitoring the grafting process, FTIR was used, while the percentage of the loaded silane was calculated using TGA. Furthermore, XRD measurements were carried out to evaluate the increase in the d-spacing. The amount of grafted silane increases when a suitable premixing process, such as the mechanical mixer and homogenizer, is chosen. The same beneficial effects were observed on d-spacing, as it increases when using the mechanical mixer and homogenizer. This study demonstrates that the degree of grafting and d-spacing of the grafted products strongly depends on the mixing process before the silylation reaction. This is very important for the synthesis and application of polymer nanocomposites containing silylated layered silicate minerals.

Keywords


  1. Aalaie, J. (2016). viscoelastic properties of polyacrylamide nanocomposite hydrogels prepared in electrolyte media: effect of gelant volume, Journal of Petroleum Science and Technology, 6,1: 80-87. Doi:10/22078/JPST.2016.571.##
  2. Abbassi, H., Abidi, R., & Zayani, M. B. (2021). A short review on the silylated clays-polymer nanocomposites: synthesis, properties and applications, Moroccan Journal of Heterocyclic Chemistry, 20(2), 20-2, doi:org/10.48369/IMIST.PRSM/jmch-v20i2.24712. ##
  3. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S. & Schmid, M. (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, Automotive and Solar Energy Fields Nanomater, 7(4): 74. doi: 10.3390/nano7040074. ##
  4. Arinkoola, A. O., Atitebi, Z. M., Abidemi, G. O., Jimoh, M. O., Salam, K. K., Alagbe, S. O. & Salawudeen, T. O. (2021). Enhancement of filtration and rheological properties of water-based drilling fluid prepared using nigerian ohia bentonite and local additives, Journal of Petroleum Science and Technology, 11,4: 55-62. doi: 10.22078/JPST.2022.4644.1764. ##
  5. Pavlidou, S. & Papaspyrides C. D. (2008) A review on polymer-layered silicate nanocomposites, Progress in Polymer Science, 33: 1119-1198. doi.org/10.1016/j.progpolymsci.2008.07.008. ##
  6. Aalaie, J., Vasheghani-Farahani, E., Rahmatpour, A. & Semsarzadeh, M. A. (2008). Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions, European Polymer Journal, 44: 2024-2031. doi: 10.1016/j.eurpolymj.2008.04.031. ##
  7. Khoshniyat, A., Sharif, A. & Aalaie, J. (2015). Experimental and thermodynamic investigation of the stability of copolymer grafted bentonite nanoclays in a high salinity electrolyte, Polymer Science, Series A, 57: 883–888. doi: 10.1134/S0965545X1507007X. ##
  8. Zargar, G., Firozjaii, A. M., KhedriMirghaed, M. & Moghadasi, J. (2021). Experimental study on preventing formation damage due to clay swelling caused by water based drilling fluid using aluminum ion based clay inhibitor, Journal of Petroleum Science and Technology, 11,2: 13-21, doi: 10.22078/JPST.2021.4403.1714. ##
  9. Yan, L., Roth, C. B. & Low, P. F. (1996). Changes in the Si−O Vibrations of Smectite Layers Accompanying the Sorption of Interlayer Water, Langmuir, 12: 4421-4429. doi.org/10.1021/la960119e. ##
  10. Toth, R., Voorn, D. J., Handgraaf, J. W., Fraaije, J. G. E. M., Fermeglia, M., Pricl, S. & Posocco, P. (2009). Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites, Macromolecules, 42(8260-8270), doi:10.1021/ma901584w. ##
  11. He, H., Ma, L., Zhu, J., Frost, R. L., Theng, B. K. G. & Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues, Applied Clay Science, 100(22-28), doi:10.1016/j.clay.2014.02.008. ##
  12. He, H., Ma, Y., Zhu, J., Yuan, P. & Qing, Y. (2010) .Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration, Applied Clay Science, 48(67-72), doi: 10.1016/j.clay.2009.11.024. ##
  13. Asgari, M., Abouelmagd, A. & Sundararaj, U. (2017). Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites, Applied Clay Science, 146(439-448), doi.org/10.1016/j.clay.2017.06.035. ##
  14. Zapata, P. A., Belver, C., Quijada, R., Aranda, P. & Ruiz-Hitzky, E. (2013). Silica/clay organo-heterostructures to promote polyethylene–clay nanocomposites by in situ polymerization, Applied Catalysis A: General, 453:142. doi.org/10.1016/j.apcata.2012.12.012. ##
  15. Bee, S. L., Abdullah, M. A .A., Mamat, M., Bee, S. T., Sin, L. T., Hui, D. & Rahmat, A. R. (2017). Characterization of silylated modified clay nanoparticles and its functionality in PMMA, Composites Part B: Engineering, 110:83-95. doi.org/10.1016/j.compositesb.2016.10.084. ##
  16. Jincheng, W., Xiaoyu, Z., Wenli, H., Nan, X. & Xingchen, P. (2012). Synthesis of hyper-branched quaternary ammonium salt and its application into montmorillonite, Powder Technology, 221(80-89.( doi.org/10.1016/j.powtec.2011.11.006. ##
  17. Bertuoli, P. T., Piazza, D., Scienza, L. C. & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane, Applied Clay Science, 87(46-51). doi: 10.1016/j.clay.2013.11.020. ##
  18. Bujdák, J., Danko, M., Chorvát, D., Czímerová, A., Sýkora, J., Lang, K. (2012). Selective modification of layered silicate nanoparticle edges with fluorophores, Applied Clay Science, 65-66(152-157), doi.org/10.1016/j.clay.2012.04.029. ##
  19. Fatimah, I. (2018). Preparation, characterization and physicochemical study of 3-amino propyl trimethoxy silane-modified kaolinite for Pb(II) adsorption, Journal of King Saud University-Science, 30, 2(250-257), doi.org/10.1016/j.jksus.2017.04.006. ##
  20. Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H. P. S., Salema, A. A., Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites, Materials & Design, 46(391-410), doi.org/10.1016/j.matdes.2012.10.044. ##
  21. Su, L., Tao, Q., He, H., Zhu, J. & Yuan, P. (2012). Locking effect: A novel insight in the silylation of montmorillonite surfaces, Materials Chemistry and Physics, 136(292-295). doi.org/10.1016/j.matchemphys.2012.07.010. ##
  22. He, H., Duchet, J., Galy, J. & Gerard, J. F. (2005). Grafting of swelling clay materials with 3-aminopropyltriethoxysilane, Journal of Colloid and Interface Science, 288(171-176), doi.org/10.1016/j.jcis.2005.02.092. ##
  23. Piscitelli, F., Scamardella, A. M., Romeo, V., Lavorgna, M., Barra, G., Amendola, E. (2012), Epoxy composites based on amino‐silylated MMT: The role of interfaces and clay morphology, Journal of Applied Polymer Science, 124, 1(616-628), doi.org/10.1002/app.35015. ##
  24. Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri & G., Lavorgna, M. (2010). Sodium montmorillonite silylation: unexpected effect of the aminosilane chain length, Journal of Colloid and Interface Science, 351(108-115), doi.org/10.1016/j.jcis.2010.07.059. ##
  25. Ianchis, R., Corobea, M. C., Donescu, D., Rosca, I. D., Cinteza, L. O., Nistor, L. C., Vasile, E., Marin, A. & Preda, S. (2012). Advanced functionalization of organoclay nanoparticles by silylation and their polystyrene nanocomposites obtained by miniemulsion polymerization, Journal of Nanoparticle Research, 14, 11: 1233. doi: 10.1007/s11051-012-1233-6. ##
  26. Shen, W., He, H., Zhu, J., Yuan, P., Frost, R. L. (2007). Grafting of montmorillonite with different functional silanes via two different reaction systems, Journal of Colloid and Interface Science, 313: 268-273, doi: 10.1016/j.jcis.2007.04.029. ##
  27. Su, L., Tao, Q., He, H., Zhu, J., Yuan, P. & Zhu, R. (2013). Silylation of montmorillonite surfaces: Dependence on solvent nature, Journal of Colloid and Interface Science, 391(16-20), doi: 10.1016/j.jcis.2012.08.077. ##
  28. Queiroga, L. N. F., Pereira, M. B. B., Silva, L. S., Silva Filho, E. C., Santos, I. M. G., Fonseca, M. G., Georgelin, T. & Jaber, M. (2019). Microwave bentonite silylation for dye removal: Influence of the solvent, Applied Clay Science, 168: 478–487. doi.org/10.1016/j.clay.2018.11.027. ##
  29. Yang, S. q., Yuan, P., He, H. p., Qin, Z. h., Zhou, Q., Zhu, J. x. & Liu, D. (2012). Effect of reaction temperature on grafting of γ-aminopropyl triethoxysilane (APTES) onto kaolinite, Applied Clay Science, 62, 63: 8-14. doi.org/10.1016/j.clay.2012.04.006. ##
  30. Asgari, M. & Sundararaj, U. (2018). Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting, Applied Clay Science, 153: 228-238. doi.org/10.1016/j.clay.2017.12.020. ##
  31. Shanmugharaj, A. M., Rhee, K. Y. & Ryu, S. H. (2006). Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials, Journal of Colloid and Interface Science, 298: 854-859. doi: 10.1016/j.jcis.2005.12.049. ##
  32. Ahenach, J., Cool, P., Vansant, E., Lebedev, O. & Van Landuyt, J. (1999). Influence of water on the pillaring of montmorillonite with aminopropyltriethoxysilane, Physical Chemistry Chemical Physics, 1: 3703-3708. doi.org/10.1039/A901888C. ##
  33. Sharma, K. K., Anan, A., Buckley, R. P., Ouellette, W. & Asefa, T. (2008). Toward efficient nanoporous catalysts: controlling site-isolation and concentration of grafted catalytic sites on nanoporous materials with solvents and colorimetric elucidation of their site-isolation, Journal of the American Chemical Society, 130: 218-228, doi.org/10.1021/ja074128t. ##
  34. Sepehri, S., Rafizadeh, M., Hemmati, M. & Bouhendi, H. (2015). Preparation of acryl amide/2-acryl amido-2-methyl propane sulfonic acid/silane modified montmorillonite water-soluble nanocomposites: study of thermal and rheological properties, Journal of Polymer Research, 22, 5: 1-11, doi: 10.1007/s10965-015-0721-7. ##
  35. Zhao, C., Feng, M., Gong, F., Qin, H. & Yang, M. (2004). Preparation and characterization of polyethylene–clay nanocomposites by using chlorosilane-modified clay, Journal of Applied Polymer Science, 93:676-680. doi: 10.1002/app.20515. ##
  36. Hosseinkhanli, H., Sharif, A. R., Aalaie, J., Khalkhali, T. & Akhlaghi, Sh. (2013). Oxygen Permeability, Mechanical, and Thermal Properties of LDPE/EVA/ Organoclay Blown Film Nanocomposites, Journal of Vinyl and Additive Technology, 19:132-139, doi.org/10.1002/vnl.20329. ##
  37. Silva, A. A., Dahmouche, K. & Soares, B. G. (2011). Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites, Applied Clay Science, 54:151-158. doi.org/10.1016/j.clay.2011.08.002. ##
  38. Paul, B., Martens,W. N. & Frost, R. L. (2011). Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin, Applied Surface Science, 257: 5552-5558, doi.org/10.1016/j.apsusc.2011.01.034. ##
  39. Lagaly, G. & Ziesmer, S. (2003). Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions, Advances in Colloid and Interface Science, 100, 102: 105-128. doi.org/10.1016/S0001-8686(02)00064-7. ##