Effect of La and Ce on the catalytic performance of ZSM-5 with the optimal Si/Al ratio in the HTO process

Document Type : Research Paper

Authors

1 Department of Chemistry, Shahid Beheshti University, Tehran, Iran

2 Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

This study investigates, the performance of ZSM-5 zeolite catalysts with different Si/Al ratios equal to 40, 120, and 200 in the n-hexane catalytic cracking process in a fixed bed microreactor at 550°C under atmospheric pressure with a WHSV = 4 h-1. To improve the acidity of the catalysts and increase the yield of light olefins, the best catalyst among the three synthesized catalysts was modified by lanthanum and cerium metals. These two rare earth metals were chosen as modifiers since they were expected to improve the acidic properties of the parent catalyst. Furthermore, XRD, FT-IR, FESEM, EDX Dot-Mapping, BET, and NH3-TPD analyses were used to evaluate and characterize the synthesized catalysts. According to the results, the Z-La catalyst has significantly improved catalytic performance, such as the yield of light olefins, P/E ratio, and a decrease in the production of light alkanes and aromatic compounds compared to other catalysts. The yield of light olefins obtained from it was equal to 62.91%, and the P/E ratio was equal to 3.25. This significant progress in this catalyst compared to other catalysts in this research is due to adding La to H–ZSM-5 zeolite, which causes changes and modifies the acidity properties of this catalyst (S/W ratio of acidity = 0.54).

Keywords


  1. Siddiqui, B., Aitani, A. M., Saeed, M. R., & Al-Khattaf, S. (2010). Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst, Topics in Catalysis, 53(19), 1387–1393, doi.org/10.1007/s11244-010-9598-1. ##
  2. Nasser, G. A., Kurniawan, T., Tago, T., Bakare, I. A., Taniguchi, T., Nakasaka, Y., Masuda, T., & Muraza, O. (2016). Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals, Journal of the Taiwan Institute of Chemical Engineers, 61, 20–25, doi.org/10.1016/j.jtice.2015.11.025. ##
  3. Salah Aldeen, O. D. A., Mahmoud, M. Z., Majdi, H. S., Mutlak, D. A., & Fakhriddinovich Uktamov, K. (2022). Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha, Advances in Materials Science and Engineering, doi.org/10.1155/2022/6165180. ##
  4. Tanimu, A., Tanimu, G., Alasiri, H., & Aitani, A. (2022). Catalytic cracking of crude oil: mini review of catalyst formulations for enhanced selectivity to light olefins, Energy & Fuels, 36(10), 5152–5166, doi.org/10.1021/acs.energyfuels.2c00567. ##
  5. Al-Shafei, E. N., Aljishi, A. N., Shakoor, Z. M., Albahar, M. Z., Aljishi, M. F., & Alasseel, A. (2023). Steam catalytic cracking and lump kinetics of naphtha to light olefins over nanocrystalline ZSM-5 zeolite. RSC Advances, 13(37), 25804–25816, doi: 10.1039/D3RA03157H. ##
  6. Hou, X., Qiu, Y., Zhang, X., & Liu, G. (2017). Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins, Chemical Engineering Journal, 307, 372–381, doi.org/10.1016/j.cej.2016.08.047. ##
  7. Kubota, Y., Inagaki, S., & Takechi, K. (2014). Hexane cracking catalyzed by MSE-type zeolite as a solid acid catalyst. Catalysis Today, 226, 109–116, doi.org/10.1016/j.cattod.2013.10.032. ##
  8. Muraza, O., Bakare, I. A., Tago, T., Konno, H., Taniguchi, T., Al-Amer, A. M., Yamani, Z. H., Nakasaka, Y., & Masuda, T. (2014). Selective catalytic cracking of n-hexane to propylene over hierarchical MTT zeolite. Fuel, 135, 105–111, doi.org/10.1016/j.fuel.2014.06.045. ##
  9. Ghazimoradi, M., Soltanali, S., Karami, H., Ghassabzadeh, H., & Bakhtiari, J. (2023). A facile strategy to prepare ZSM-5-based composites with enhanced light olefin selectivity and stability in the HTO process. RSC Advances, 13(29), 20058, doi.org/10.1039/D3RA03680D. ##
  10. Ghazimoradi, M., Soltanali, S., Safari, N., & Ghassabzadeh, H. (2023). Synthesis of fluorinated ZSM-5 catalysts: fluoride effect on structure properties and coke resistance in n-hexane catalytic cracking. Journal of Materials Science, 1–17, doi.org/10.1007/s10853-023-08776-x. ##
  11. Li, J., Liu, M., Li, S., Guo, X., & Song, C. (2019). Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 58(5), 1896–1905, doi.org/10.1021/acs.iecr.8b03969. ##
  12. Zhou, H., Zhang, F., Ji, K., Gao, J., Liu, P., Zhang, K., & Wu, S. (2021). Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts, 11(10), 1138, doi.org/10.3390/catal11101138. ##
  13. Chal, R., Gerardin, C., Bulut, M., & van Donk, S. (2011). Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 3(1), 67–81, doi.org/10.1002/cctc.201000158. ##
  14. Fals, J., Toloza, C. A. T., Puello-Polo, E., Márquez, E., & Méndez, F. J. (2023). A comprehensive study of product distributions and coke deposition during catalytic cracking of vacuum gas oil over hierarchical zeolites. Heliyon, 9(4), doi.org/10.1016/j.heliyon.2023.e15408. ##
  15. Abello, S., Bonilla, A., & Perez-Ramirez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching, Applied Catalysis A: General, 364(1–2), 191–198, doi.org/10.1016/j.apcata.2009.05.055. ##
  16. Ahmadpour, J., & Taghizadeh, M. (2015). Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates. Journal of Natural Gas Science and Engineering, 23, 184–194, doi.org/10.1016/j.jngse.2015.01.035. ##
  17. Xiaoning, W., Zhen, Z., Chunming, X., Aijun, D., Li, Z., & Guiyuan, J. (2007). Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins. Journal of Rare Earths, 25(3), 321–328, doi.org/10.1016/S1002-0721(07)60430-X. ##
  18. Momayez, F., Towfighi Darian, J., & Mohammadalizadeh, A. (2014). The effect of Ce and Zr loading over HZSM-5 to produce light olefins from naphtha, Nashrieh Shimi va Mohandesi Shimi Iran, 33(1), 37–47, doi.org/10.1016/j.jaap.2015.02.006. ##
  19. Taghipour, N., Towfighi, J., Mohamadalizadeh, A., Shirazi, L., & Sheibani, S. (2013). The effect of key factors on thermal catalytic cracking of naphtha over Ce–La/SAPO-34 catalyst by statistical design of experiments, Journal of Analytical and Applied Pyrolysis, 99, 184–190, doi.org/10.1016/j.jaap.2012.09.008. ##
  20. D5758-01. (2015). Standard test method for determination of relative crystallinity of zeolite ZSM-5 by X-ray diffraction. ASTM Int. West Conshohocken. ##
  21. Ghazimoradi, M., Safari, N., Soltanali, S., & Ghassabzadeh, H. (2023). Effect of simultaneous dealumination and metal incorporation of zeolite ZSM-5 on the catalytic performance in HTO process. Microporous and Mesoporous Materials, 112486, doi.org/10.1016/j.micromeso.2023.112486. ##
  22. Karami, H., Soltanali, S., Najafi, A. M., Ghazimoradi, M., Yaghoobpour, E., & Abbasi, A. (2023). Amorphous silica-alumina as robust support for catalytic dehydrogenation of propane: Effect of Si/Al ratio on nature and dispersion of Cr active sites. Applied Catalysis A: General, 658, 119167, doi.org/10.1016/j.apcata.2023.119167. ##
  23. Zhang, X., Cheng, D., Chen, F., & Zhan, X. (2017). n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores, Chemical Engineering Science, 168, 352–359, doi.org/10.1016/j.ces.2017.05.012. ##
  24. Karami, H., Kazemeini, M., Soltanali, S., & Rashidzadeh, M. (2022b). The effect of post-synthesis modification of Faujasite zeolites (X, Y) on the catalytic performance of diesel hydrodesulfurization process, Journal of Applied Research in Chemisry, 15(4), 106–117, doi: 10.30495/jacr.2022.688740. ##
  25. Najafi, A. M., Soltanali, S., & Ghassabzadeh, H. (2023). Enhancing the CO2, CH4, and N2 adsorption and kinetic performance on FAU zeolites for CO2 capture from flue gas by metal incorporation technique. Chemical Engineering Journal, 143719, doi.org/10.1016/j.cej.2023.143719. ##
  26. Najafi, A. M., Soltanali, S., Khorashe, F., & Ghassabzadeh, H. (2023). Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X. Chemosphere, 324, 138275, doi.org/10.1016/j.chemosphere.2023.138275. ##
  27. Karami, H., Kazemeini, M., Soltanali, S., & Rashidzadeh, M. (2022). Influence of adding a modified zeolite-Y onto the NiMo/Al2O3 catalyst utilized to produce a diesel fuel with highly reduced sulfur content, Microporous and Mesoporous Materials, 332, 111704, doi.org/10.1016/j.micromeso.2022.111704. ##
  28. Pérez‐Ramírez, J., Verboekend, D., Bonilla, A., & Abelló, S. (2009). Zeolite catalysts with tunable hierarchy factor by pore‐growth moderators. Advanced Functional Materials, 19(24), 3972–3979, doi.org/10.1002/adfm.200901394. ##
  29. Sousa-Aguiar, E. F., Trigueiro, F. E., & Zotin, F. M. Z. (2013). The role of rare earth elements in zeolites and cracking catalysts. Catalysis Today, 218, 115–122, doi.org/10.1016/j.cattod.2013.06.021. ##
  30. Zhang, D., Wei, Y., Xu, L., Chang, F., Liu, Z., Meng, S., Su, B.-L., & Liu, Z. (2008). MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous and Mesoporous Materials, 116(1–3), 684–692, doi.org/10.1016/j.micromeso.2008.06.001. ##
  31. Zhan, W., Guo, Y., Gong, X., Guo, Y., Wang, Y., & Lu, G. (2014). Current status and perspectives of rare earth catalytic materials and catalysis, Chinese Journal of Catalysis, 35(8), 1238–1250, doi.org/10.1016/S18722067(14)60189. ##
  32. Xue, N., Liu, N., Nie, L., Yu, Y., Gu, M., Peng, L., Guo, X., & Ding, W. (2010). 1-Butene cracking to propene over P/HZSM-5: Effect of lanthanum, Journal of Molecular Catalysis A: Chemical, 327(1–2), 12–19, doi.org/10.1016/j.molcata.2010.05.004. ##
  33. Zhu, J., Yan, S., Qian, Y., Zhu, X., & Yang, F. (2023). Fabrication of fluffy-ball like ZSM-5 zeolite and its application in hexane catalytic cracking. Microporous and Mesoporous Materials, 351, 112465, doi.org/10.1016/j.micromeso.2023.112465. ##
  34. Zhu, J., Yan, S., Xu, G., Zhu, X., & Yang, F. (2023). Fabrication of sheet-like HZSM-5 zeolites with various SiO2/Al2O3 and process optimization in hexane catalytic cracking, Journal of Solid State Chemistry, 318, 123772, doi.org/10.1016/j.jssc.2022.123772. ##