The Effect of Cobalt to Iron Ratio on Novel Perovskite Catalysts for Fischer-Tropsch Synthesis

Document Type : Research Paper

Authors

1 Iran University of Science and Technology, Tehran, Iran

2 Research Institute of Petroleum Industry (RIPI)

10.22078/jpst.2023.5251.1904

Abstract

Fischer-Tropsch synthesis is a direct method to produce fuels with low aromatic and sulfur content. Among various types of catalysts used for Fischer-Tropsch synthesis, the perovskite catalysts are more effective in a wide range of chemical reactions and have significant applications for gas-solid reactions. This study investigates the application of LaFe(1−x)CoxO3 perovskite catalyst with various Co to Fe ratios in Fischer Tropsch synthesis. The perovskite oxides are prepared via the sol-gel method and characterized using temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), Transmission electron micrographs (TEM), and BET surface area techniques. In addition, the catalyst is tested in a fixed bed reactor at 240, 260, 280, and 300 °C and 20 barg pressure. The results show that the crystal structure of LaFe(1−x)CoxO3 perovskite catalyst is changed and demonstrated high activity due to the iron active site; therefore, by increasing the amount of iron catalyst structure shifts to the orthorhombic and the CO conversion increases noticeably. Results show that the LaFe0.7Co0.3O3 catalyst at 280 °C is a possible candidate for Fischer-Tropes synthesis.

Keywords


  1. Bedel, L., Roger, A. C., Estournes, C., & Kiennemann, A. (2003). Co0 from partial reduction of La (Co, Fe) O3 perovskites for Fischer–Tropsch synthesis, Catalysis Today, 85(2-4), 207-218, https://doi.org/10.1016/S0920-5861(03)00388-2.##
  2. Torshizi, H. O., Pour, A. N., Mohammadi, A., & Zamani, Y. (2020). Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride, New Journal of Chemistry, 44(15), 6053-6062, https://doi.org/10.1039/D0NJ01041C. ##
  3. Lin, X. M., Sorensen, C. M., Klabunde, K. J., & Hadjipanayis, G. C. (1998). Temperature dependence of morphology and magnetic properties of cobalt nanoparticles prepared by an inverse micelle technique, Langmuir, 14(25), 7140-7146, https://doi.org/10.1021/la980509w. ##
  4. Arai, H., Yamada, T., Eguchi, K., & Seiyama, T. (1986). Catalytic combustion of methane over various perovskite-type oxides. Applied catalysis, 26, 265-276, https://doi.org/10.1016/S0166-9834(00)82556-7. ##
  5. Deng, S., Lei, Y., Deng, Y., Lai, Y., & Gao, X. (2022). Recent advances in the application of perovskite catalysts in the dry reforming of methane, Catalysis Research, 2(2), 1-11, doi:10.21926/cr.2202012. ##
  6. Zhang, X., Qian, W., Zhang, H., Sun, Q., & Ying, W. (2018). Online measurement of solids motion in fluidized bed reactor with different distributor for Fischer–Tropsch synthesis, Chinese Journal of Chemical Engineering, 26(10), 2003-2008, doi.org/10.1016/j.cjche.2017.12.003. ##
  7. Li, Z., Si, M., Xin, L., Liu, R., Liu, R., & Lü, J. (2018). Cobalt catalysts for Fischer–Tropsch synthesis: The effect of support, precipitant and pH value. Chinese journal of chemical engineering, 26(4), 747-752, doi.org/10.1016/j.cjche.2017.11.001. ##
  8. Chen, Y., Zhang, J., Jiang, X., Wei, L., Li, Z., & Liu, C. (2020). Nano-ZSM-5 decorated cobalt based catalysts for Fischer-Tropsch synthesis to enhance the gasoline range products selectivity, Journal of the Taiwan Institute of Chemical Engineers, 116, 153-159, doi.org/10.1016/j.jtice.2020.11.007. ##
  9. Li, C. (2018). Modeling and optimization of industrial Fischer–Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst, Chinese Journal of Chemical Engineering, 26(5), 1102-1109, org/10.1016/j.cjche.2018.01.002. ##
  10. Chu, W., Xu, J., Hong, J., Lin, T., & Khodakov, A. (2015). Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance, Catalysis Today, 256, 41-48, doi.org/10.1016/j.cattod.2015.05.024. ##
  11. Akbari, M., Mirzaei, A. A., Atashi, H., & Arsalanfar, M. (2018). Effect of microemulsion parameters on product selectivity of MgO-supported iron–cobalt–manganese–potassium nanocatalyst for Fischer–Tropsch synthesis using response surface methodology, Journal of the Taiwan Institute of Chemical Engineers, 91, 396-404, doi.org/10.1016/j.jtice.2018.06.004. ##
  12. Tejuca, L. G., & Fierro, J. L. (1992). Properties and applications of perovskite-type oxides, CRC Press, doi.org/10.1201/9781482277258. ##
  13. Wang, Z. J., Yan, Z., Liu, C. J., & Goodman, D. W. (2011). Surface science studies on cobalt Fischer–Tropsch catalysts, ChemCatChem, 3(3), 551-559, doi.org/10.1002/cctc.201000319. ##
  14. Petunchi, J. O., Ulla, M. A., Marcos, J. A., & Lombardo, E. A. (1981). Characterization of hydrogenation active sites on LaCoO3 perovskite, Journal of Catalysis, 70(2), 356-363, doi.org/10.1016/0021-9517(81)90347-X. ##
  15. Bedel, L., Roger, A. C., Rehspringer, J. L., Zimmermann, Y., & Kiennemann, A. (2005). La (1− y) Co 4Fe0.6O3− δ perovskite oxides as catalysts for Fischer–Tropsch synthesis, Journal of Catalysis, 235(2), 279-294, doi.org/10.1016/j.jcat.2005.07.025. ##
  16. Arandiyan, H., Mofarah, S. S., Sorrell, C. C., Doustkhah, E., Sajjadi, B., Hao, D., & Maschmeyer, T. (2021). Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 50(18), 10116-10211, doi.org/10.1039/D0CS00639D. ##
  17. S Sayadi Borazjani, K., Pouranfard, A., & Razmjooei, S. (2023). Synthesis and Characterization of a New Perovskite Nanocatalyst in CO Hydrogenation, Chemical Engineering & Technology, 46(10), 2110-2119, doi.org/10.1002/ceat.202200272. ##
  18. Chan, K. S., Ma, J., Jaenicke, S., Chuah, G. K., & Lee, J. Y. (1994). Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates, Applied Catalysis A: General, 107(2), 201-227, doi.org/10.1016/0926-860X(94)85156-5. ##
  19. Doshi, R., Alcock, C. B., & Carberry, J. J. (1993). Effect of surface area on CO oxidation by the perovskite catalysts La 1− x Sr x MO 3-δ (M= Co, Cr). Catalysis letters, 18, 337-343, doi.org/10.1007/BF00765279. ##
  20. Teymouri, M., Bagherzadeh, E., Petit, C., Rehspringer, J. L., Libs, S., & Kiennemann, A. (1995). Reactivity of perovskites on oxidative coupling of methane, Journal of materials Science, 30, 3005-3009, doi.org/10.1007/BF00349675. ##
  21. Wei, L., Chen, J., Lyu, S., Liu, C., Zhao, Y., Zhang, Y., & Li, J. (2021). Isomorphic titanium-substituted mesoporous SBA-16 as support for cobalt Fischer–Tropsch synthesis catalysts: balance between dispersion and reduction. New Journal of Chemistry, 45(31), 13956-13963, doi.org/10.1039/D0NJ04654J. ##
  22. Ichimura, K., Inoue, Y., & Yasumori, I. (1981). Catalysis by mixed oxide perovskites. II. The hydrogenolysis of C3-C5 hydrocarbons on LaCoO3, Bulletin of the Chemical Society of Japan, 54(6), 1787-1792, Ichimura, K., Inoue, Y., & Yasumori, I. (1981). Catalysis by mixed oxide perovskites. II. The hydrogenolysis of C3-C5 hydrocarbons on LaCoO3, Bulletin of the Chemical Society of Japan, 54(6), 1787-1792. ##
  23. Jacobs, R., Hwang, J., Shao-Horn, Y., & Morgan, D. (2019). Assessing correlations of perovskite catalytic performance with electronic structure descriptors, Chemistry of Materials, 31(3), 785-797, doi.org/10.1021/acs.chemmater.8b03840. ##
  24. Ao, M., Pham, G. H., Sage, V., & Pareek, V. (2016). Structure and activity of strontium substituted LaCoO3 perovskite catalysts for syngas conversion, Journal of Molecular Catalysis A: Chemical, 416, 96-104, doi.org/10.1016/j.molcata.2016.02.020. ##
  25. Bourzutschky, J. B., Homs, N., & Bell, A. T. (1990). Conversion of synthesis gas over LaMn1− xCUx03+ λ perovskites and related copper catalysts, Journal of Catalysis, 124(1), 52-72, doi.org/10.1016/0021-9517(90)90103-Q. ##
  26. Ni, Z., Zhang, X., Bai, J., Wang, Z., Li, X., & Zhang, Y. (2020). Potassium promoted core–shell-structured FeK@ SiO 2-GC catalysts used for Fischer–Tropsch synthesis to olefins without further reduction. New Journal of Chemistry, 44(1), 87-94, doi: 10.1039/c9nj03947c rsc.li/njc. ##
  27. Escalona, N., Fuentealba, S., & Pecchi, G. (2010). Fischer–Tropsch synthesis over LaFe1− xCoxO3 perovskites from a simulated biosyngas feed, Applied Catalysis A: General, 381(1-2), 253-260, doi.org/10.1016/j.apcata.2010.04.022. ##
  28. Tien-Thao, N., Alamdari, H., Zahedi-Niaki, M. H., & Kaliaguine, S. (2006). LaCo1− xCuxO3− δ perovskite catalysts for higher alcohol synthesis, Applied Catalysis A: General, 311, 204-212, doi:.org/10.1016/j.apcata.2006.06.029. ##
  29. Tien-Thao, N., Alamdari, H., & Kaliaguine, S. (2008). Characterization and reactivity of nanoscale La (Co, Cu) O3 perovskite catalyst precursors for CO hydrogenation. Journal of solid state chemistry, 181(8), 2006-2019, doi.org/10.1016/j.jssc.2007.11.016. ##
  30. Tien-Thao, N., Alamdari, H., & Kaliaguine, S. (2008). Characterization and reactivity of nanoscale La (Co, Cu) O3 perovskite catalyst precursors for CO hydrogenation, Journal of solid state chemistry, 181(8), 2006-2019, doi.org/10.1016/j.apcata.2007.04.009. ##
  31. Tien-Thao, N., Zahedi-Niaki, M. H., Alamdari, H., & Kaliaguine, S. (2007). Effect of alkali additives over nanocrystalline Co–Cu-based perovskites as catalysts for higher-alcohol synthesis, Journal of Catalysis, 245(2), 348-357, doi.org/10.1016/j.jcat.2006.10.026. ##
  32. Nguyen, T. T., Zahedi-Niaki, M. H., Alamdari, H., & Kaliaguine, S. (2007). Co-Cu metal alloys from LaCo1-xCuxO3 perovskites as catalysts for higher alcohol synthesis from syngas, International Journal of Chemical Reactor Engineering, 5(1), doi.org/10.2202/1542-6580.1583. ##
  33. Fang, Y., Liu, Y., Deng, W., & Liu, J. (2014). Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas, Journal of energy chemistry, 23(4), 527-534, doi.org/10.1016/S2095-4956(14)60181-9. ##
  34. Liu, G., Geng, Y., Pan, D., Zhang, Y., Niu, T., & Liu, Y. (2014). Bi-metal Cu–Co from LaCo1− xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols. Fuel processing technology, 128, 289-296, doi.org/10.1016/j.fuproc.2014.07.010. ##
  35. Lee, Y. N., Lago, R. M., Fierro, J. L. G., & González, J. (2001). Hydrogen peroxide decomposition over Ln1− xAxMnO3 (Ln= La or Nd and A= K or Sr) perovskites. Applied Catalysis A: General, 215(1-2), 245-256, doi.org/10.1016/S0926-860X(01)00536-1. ##
  36. Van Roosmalen, J. A. M., Cordfunke, E. H. P., Helmholdt, R. B., & Zandbergen, H. W. (1994). The defect chemistry of LaMnO3±δ: 2. Structural aspects of LaMnO3+ δ, Journal of Solid State Chemistry, 110(1), 100-105, doi.org/10.1006/jssc.1994.1141. ##
  37. Sis, L. B., Wirtz, G. P., & Sorenson, S. C. (1973). Structure and properties of reduced LaCoO3, Journal of Applied Physics, 44(12), 5553-5559, doi.org/10.1063/1.1662195. ##
  38. Keav, S., Matam, S. K., Ferri, D., & Weidenkaff, A. (2014). Structured perovskite-based catalysts and their application as three-way catalytic converters—A Review. Catalysts, 4(3), 226-255, doi.org/10.3390/catal4030226. ##
  39. Panich, N. M., Pirogova, G. N., Korosteleva, R. I., & Voronin, Y. V. (1999). Oxidation of CO and hydrocarbons over perovskite-type complex oxides, Russian chemical Bulletin, 48, 694-697. ##
  40. Thao, N. T. (2013). Synthesis of Co-Cu/La2O3 Pervoskites for Hydrogenation of CO, Asian Journal of Chemistry, 25(14), 8082, doi.org/10.14233/ajchem.2013.15120. ##
  41. Zhang, Q., & Saito, F. (2000). Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders, Journal of Alloys and Compounds, 297(1-2), 99-103, doi.org/10.1016/S0925-8388(99)00606-4. ##
  42. Ramaswamy, V., Awati, P., & Tyagi, A. K. (2004). Lattice thermal expansion of LaCo1− xCuxO3, Journal of alloys and Compounds, 364(1-2), 180-185, doi.org/10.1016/S0925-8388(03)00496-1. ##
  43. Liu, Z., Chen, W. F., Zhang, X., Zhang, J., Koshy, P., & Sorrell, C. C. (2019). Structural and microstructural effects of Mo3+/Mo5+ codoping on properties and photocatalytic performance of nanostructured TiO2 Thin films, The Journal of Physical Chemistry C, 123(18), 11781-11790, doi.org/10.1021/acs.jpcc.9b02667. ##
  44. Mohammadi, M. R., Cordero-Cabrera, M. C., Ghorbani, M., & Fray, D. J. (2006). Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters, Journal of Sol-gel Science and Technology, 40, 15-23, doi.org/10.1007/s10971-006-8267-0. ##
  45. Rodriguez, G., Bedel, L., Roger, A. C., Udron, L., Carballo, L., & Kiennemann, A. (2003). Dry Reforming of Ethane on Trimetallic Perovskites LaCoxFe1-xO3: Characterizations and Reactivity, doiI:10.1021/bk-2003-0852.ch004. ##
  46. Zhu, Q., Cheng, H., Zou, X., Lu X., Xu Q. & Zhou Zh. (2015). Synthesis, characterization, and catalytic performance of La0. 6Sr0. 4NixCo1–xO3 perovskite catalysts in dry reforming of coke oven gas, Chinese Journal of Catalysis, 36(7): 915-924, doi.org/10.1016/S1872-2067(14)60303-X. ##
  47. Traversa, E., Nunziante, P., Sakamoto, M., Sadaoka, Y., & Montanari, R. (1998). Synthesis and structural characterization of trimetallic perovskite-type oxides, LaFexCo1− xO3, by the thermal decomposition of cyano complexes, La [FexCo1− x (CN6)]· nH2O, Materials Research Bulletin, 33(5), 673-681, doi.org/10.1016/S0025-5408(98)00044-0. ##
  48. Traversa, E., Nunziante, P., Sakamoto, M., Sadaoka, Y., & Montanari, R. (1998). Synthesis and structural characterization of trimetallic perovskite-type oxides, LaFexCo1− xO3, by the thermal decomposition of cyano complexes, La [FexCo1− x (CN6)]· nH2O, Materials Research Bulletin, 33(5), 673-681, doi.org/10.1016/j.jechem.2021.08.023. ##
  49. Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World journal of Nano Science and Engineering, 2(3), 154-160, 154-160, doi: 10.4236/wjnse.2012.23020. ##
  50. Lögdberg, S., Lualdi, M., Järås, S., Walmsley, J. C., Blekkan, E. A., Rytter, E., & Holmen, A. (2010). On the selectivity of cobalt-based Fischer–Tropsch catalysts: Evidence for a common precursor for methane and long-chain hydrocarbons, Journal of Catalysis, 274(1), 84-98, doi.org/10.1016/j.jcat.2010.06.007. ##
  51. Rytter, E., Tsakoumis, N. E., & Holmen, A. (2016).
  52. On the selectivity to higher hydrocarbons in Co-based Fischer–Tropsch synthesis. Catalysis Today, 261, 3-16, doi.org/10.1016/j.cattod.2015.09.020. ##
  53. Bedel, L., Roger, A. C., Rehspringer, J. L., & Kiennemann, A. (2004). Structure-controlled La-Co-Fe perovskite precursors for higher C2-C4 olefins selectivity in Fischer-Tropsch synthesis, In Studies in surface science and catalysis, 147, 319-324, Elsevier, doi.org/10.1016/S0167-2991(04)80071-5. ##