Individual and Symbiotic Interfacial Contribution of Ions to Hydrophilic Enhancement of Oil-Bearing Dolomite: Implication to Ion-Engineered Waterflooding

Document Type : Research Paper


Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran


The ion-specificity of minerals’ wettability is an active research area of particular importance in ion-engineered waterflooding as a promising enhanced oil recovery method. In this process, the wettability of the oil-brine-rock (OBR) system is changed by designing the ions of injected water. Though the contribution of ions to the wetting character of carbonates, particularly dolomite (CaMg(CO3)2), has been investigated by various studies, the contribution of ions still needs to be resolved. Through a systematic experimental investigation, the present paper sheds light on the contribution of the main constituent ions of natural brines to retrieving the water-favoring virtue of oil-bearing rocks majorly composed of dolomite. The static wettability measurements showed distinct affinity of individual surface-active ions to the dolomite/water interface, following the order SO42- > NO3- > Ca2+ > Mg2+. To clarify the effect of mixed electrolytes, results of experimental scenarios showed the assisting role of sulfate and, to a lesser extent, nitrate to restore the hydrophilic virtue of oil-aged dolomite samples, irrespective of the divalent cations, which was also mirrored to incremental oil displacement upon enriching those anions in dynamic core flooding tests. The cooperation of SO42- and NO3- anions yielded optimal wettability alteration in static experiments and maximum oil mobilization in core flooding tests. Insights provided here improve our knowledge of the ion-dependent wettability response of dolomite with implications to diverse fields of surface science, particularly for the rational design of brine composition to acquire optimal performance of water-based EOR operations. 


  1. Liu, F., & Wang, M. (2020). Review of low salinity waterflooding mechanisms: Wettability alteration and its impact on oil recovery. Fuel, 267, 117112., doi: 10.1016/j.fuel.2020.117112. ##
  2. Katende, A., & Sagala, F. (2019). A critical review of low salinity water flooding: Mechanism, laboratory and field application. Journal of Molecular Liquids, 278, 627-649, doi: 10.1016/j.molliq.2019.01.037. ##
  3. Fathi, S. J., Austad, T., & Strand, S. (2011). Water-based enhanced oil recovery (EOR) by “smart water”: Optimal ionic composition for EOR in carbonates. Energy & Fuels, 25(11), 5173-5179, doi: 10.1021/ef201019k. ##
  4. Zaeri, M. R., Hashemi, R., Shahverdi, H., & Sadeghi, M. (2018). Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water, Petroleum Science, 15, 564-576. ##
  5. Zaeri, M. R., Shahverdi, H., Hashemi, R., & Mohammadi, M. (2019). Impact of water saturation and cation concentrations on wettability alteration and oil recovery of carbonate rocks using low-salinity water, Journal of Petroleum Exploration and Production Technology, 9, 1185-1196. ##
  6. Tian, H., & Wang, M. (2017). Electrokinetic mechanism of wettability alternation at oil-water-rock interface. Surface Science Reports, 72(6), 369-391, doi: 10.1016/j.surfrep.2018.01.001. ##
  7. Bhicajee, P., & Romero-Zerón, L. (2021). Effect of different low salinity flooding schemes and the addition of alkali on the performance of low-salinity waterflooding during the recovery of heavy oil from unconsolidated sandstone, Fuel, 289, 119981. ##
  8. Hao, J., Mohammadkhani, S., Shahverdi, H., Esfahany, M. N., & Shapiro, A. (2019). Mechanisms of smart waterflooding in carbonate oil reservoirs-A review, Journal of Petroleum Science and Engineering, 179, 276-291, doi: 10.1016/j.petrol.2019.04.049. ##
  9. Tajikmansori, A., Dehaghani, A. H. S., & Haghighi, M. (2022). Improving chemical composition of smart water by investigating performance of active cations for injection in carbonate Reservoirs: A mechanistic study, Journal of Molecular Liquids, 348, 118043. ##
  10. Dehaghani, A. H. S., Hosseini, M., Tajikmansori, A., & Moradi, H. (2020). A mechanistic investigation of the effect of ion-tuned water injection in the presence of cationic surfactant in carbonate rocks: an experimental study, Journal of Molecular Liquids, 304, ##
  11. Al-Hashim, H., Kasha, A., Abdallah, W., & Sauerer, B. (2018). Impact of modified seawater on zeta potential and morphology of calcite and dolomite aged with stearic acid, Energy & Fuels, 32(2), 1644-1656, doi: 10.1021/acs.energyfuels.7b03753. ##
  12. Moosavi, S. R., Rayhani, M., Malayeri, M. R., & Riazi, M. (2019). Impact of monovalent and divalent cationic and anionic ions on wettability alteration of dolomite rocks, Journal of Molecular Liquids, 281, 9-19, doi: 10.1016/j.molliq.2019.02.078.
  13. Rashid, S., Mousapour, M. S., Ayatollahi, S., Vossoughi, M., & Beigy, A. H. (2015). Wettability alteration in carbonates during “Smart Waterflood”: Underlying mechanisms and the effect of individual ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 142-153, doi: 10.1016/j.colsurfa.2015.09.067. ##
  14. Shariatpanahi, S. F., Hopkins, P., Aksulu, H., Strand, S., Puntervold, T., & Austad, T. (2016). Water based EOR by wettability alteration in dolomite. Energy & Fuels, 30(1), 180-187, doi: 10.1021/acs.energyfuels.5b02239. ##
  15. Bai, S., Kubelka, J., & Piri, M. (2021). Wettability reversal on dolomite surfaces by divalent ions and surfactants: an experimental and molecular dynamics simulation study, Langmuir, 37(22), 6641-6649, doi: 10.1021/acs.langmuir.1c00415. ##
  16. Dehaghani, A. H. S., & Badizad, M. H. (2019). Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 470-480, doi: 10.1016/j.colsurfa.2019.02.009. ##
  17. Mahani, H., Menezes, R., Berg, S., Fadili, A., Nasralla, R., Voskov, D., & Joekar-Niasar, V. (2017). Insights into the impact of temperature on the wettability alteration by low salinity in carbonate rocks, Energy & Fuels, 31(8), 7839-7853, doi: 10.1021/acs.energyfuels.7b00776. ##
  18. Koleini, M. M., Badizad, M. H., Hartkamp, R., Ayatollahi, S., & Ghazanfari, M. H. (2019). The impact of salinity on the interfacial structuring of an aromatic acid at the calcite/brine interface: an atomistic view on low salinity effect, The Journal of Physical Chemistry B, 124(1), 224-233, doi: 10.1021/acs.jpcb.9b06987. ##
  19. Fathi, S. J., Austad, T., & Strand, S. (2010). “Smart water” as a wettability modifier in chalk: the effect of salinity and ionic composition, Energy & Fuels, 24(4), 2514-2519. doi: 10.1021/ef901304m. ##
  20. Nowrouzi, I., Manshad, A. K., & Mohammadi, A. H. (2018). Effects of dissolved binary ionic compounds and different densities of brine on interfacial tension (IFT), wettability alteration, and contact angle in smart water and carbonated smart water injection processes in carbonate oil reservoirs. Journal of Molecular Liquids, 254, 83-92, doi: 10.1016/j.molliq.2017.12.144. ##
  21. Honarvar, B., Rahimi, A., Safari, M., Khajehahmadi, S., & Karimi, M. (2020). Smart water effects on a crude oil-brine-carbonate rock (CBR) system: further suggestions on mechanisms and conditions. Journal of Molecular Liquids, 299, 112173, doi: 10.1016/j.molliq.2019.112173. ##
  22. Badizad, M. H., Koleini, M. M., Greenwell, H. C., Ayatollahi, S., & Ghazanfari, M. H. (2021). Atomistic insight into the behavior of ions at an oil-bearing hydrated calcite surface: implication to ion-engineered waterflooding. Energy & Fuels, 35(16), 13039-13054, doi: 10.1021/acs.energyfuels.1c01357. ##
  23. Badizad, M. H., Koleini, M. M., Greenwell, H. C., Ayatollahi, S., Ghazanfari, M. H., & Mohammadi, M. (2020). Ion-specific interactions at calcite–brine interfaces: a nano-scale study of the surface charge development and preferential binding of polar hydrocarbons. Physical Chemistry Chemical Physics, 22(48), 27999-28011, doi: 10.1039/d0cp04828c. ##
  24. Mahani, H., Keya, A. L., Berg, S., & Nasralla, R. (2017). Electrokinetics of carbonate/brine interface in low-salinity waterflooding: Effect of brine salinity, composition, rock type, and pH on?-potential and a surface-complexation model, Spe Journal, 22(01), 53-68 doi: 10.2118/181745-pa. ##
  25. Alghamdi, A. O., Abu-Al-Saud, M. O., Al-Otaibi, M. B., Ayirala, S. C., & Alyousef, A. (2019). Electro-kinetic induced wettability alteration in carbonates: Tailored water chemistry and alkali effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123887, doi: 10.1016/j.colsurfa.2019.123887. ##
  26. Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 199-208, doi: 10.1016/j.colsurfa.2006.12.058. ##
  27. Zhang, P., & Austad, T. (2006). Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3), 179-187, doi: 10.1016/j.colsurfa.2006.01.009. ##
  28. Zhang, P., Tweheyo, M. T., & Austad, T. (2006). Wettability alteration and improved oil recovery in chalk: The effect of calcium in the presence of sulfate. Energy & Fuels, 20(5), 2056-2062, doi: 10.1021/ef0600816. ##
  29. Koleini, M. M., Badizad, M. H., Ghatee, M. H., & Ayatollahi, S. (2019). An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs. Journal of Molecular Liquids, 293, 111530, doi: 10.1016/j.molliq.2019.111530. ##
  30. Koleini, M. M., Badizad, M. H., & Ayatollahi, S. (2019). An atomistic insight into interfacial properties of brine nanofilm confined between calcite substrate and hydrocarbon layer, Applied Surface Science, 490, 89-101, doi: 10.1016/j.apsusc.2019.05.337. ##
  31. Anderson, W. G. (1987). Wettability literature survey-part 6: the effects of wettability on waterflooding, Journal of Petroleum Technology, 39(12), 1605-1622, doi: 10.2118/16471-PA. ##
  32. Zhang, D. L., Liu, S., Puerto, M., Miller, C. A., & Hirasaki, G. J. (2006). Wettability alteration and spontaneous imbibition in oil-wet carbonate formations. Journal of Petroleum Science and Engineering, 52(1-4), 213-226, doi: 10.1016/j.petrol.2006.03.009. ##