Rapid and Efficient Demulsification of W/O Emulsions of Crude Oil by Nanocomposites based on Titanium Dioxide with Carbonaceous Substrates

Document Type : Research Paper


Chemical, Polymeric, and Petrochemical Technology Research Division, Faculty of Research and Development in Downstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran


TiO2 nanocomposites on carbonaceous compounds, such as carboxyl-functionalized, multi-walled carbon nanotubes (MWCNT-COOH), and graphene oxide (GO) were synthesized by the sol-gel method. The samples were coded as TiO2 (T), TiO2-MWCNT-COOH (TM), and TiO2-GO (TG). The effect of the addition of carbonaceous compounds on the enhancement of demulsification efficiency of TiO2 nanocomposites ‎in crude oil (W/O) emulsions was then investigated. FT-IR, Raman, and morphological analyses such as FE-SEM, EDXS, XRD, HR-TEM, DRS, BET surface area, and TGA were used to determine the properties and structures of the nanoparticles prepared. In addition, the demulsification efficiency of three nanoparticles was studied under various concentrations, settling times, and temperature conditions by bottle test. According to the screening results, TG was selected as the best sample. The response surface method with a central composite design (CCD) was used to optimize the demulsification activity of TiO2 nanocomposites with graphene oxide (TG). Thus, the impacts of temperature, demulsifier concentration, and time were studied by the RSM-CCD method. Ultimately, the results indicated ~100% demulsification efficiency under optimal conditions at concentration, temperature, and time of 75 ppm, 65oC, and 120 min., respectively. 


  1. Wang, D., Yang, D., Huang, C., Huang, Y., Yang, D., Zhang, H., & Zeng, H. (2021). Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review, Fuel, 286, 119390, doi: 10.1016/j.fuel.2020.119390. ##
  2. Chen, Z., Peng, J., Ge, L., & Xu, Z. (2015). Demulsifying water-in-oil emulsion by ethyl cellulose demulsifiers studied using focused beam reflectance measurement, Chemical Engineering Science, 130, 254-263, doi: 10.1016/j.ces.2015.03.014. ##
  3. Kokal, S. (2005). Crude oil emulsions: A State-of-the-Art Review, SPE Production & Facilities, 20, 1, 5-13, doi:10.2118/77497-PA. ##
  4. Silva, F. L. M. C., Tavares, F. W., & Cardoso, M. J. E. M. (2013). Thermodynamic stability of water-in-oil emulsions, Brazilian Journal of Petroleum and Gas, 7, 1, 1-13, doi:10.5419/bjpg2013-0001. ##
  5. Zhang, Z., Wang, Z., Zhang, H., Wang, Q., Tang, Y., Qu, Q., & Yan, X. (2023). An ionic liquid demulsifier with double cationic centers and multiple hydrophobic chains, Journal of Molecular Liquids, 374, 121265, doi: 10.1016/j.molliq.2023.121265. ##
  6. Azizi, N., & Bashipour, F. (2022). Demulsification of water-in-oil emulsions applying Fe3O4 magnetic nanoparticles for demulsifier modification: Experimental optimization via response surface methodology, Journal of Petroleum Science and Engineering, 216, 110806, doi: 10.1016/j.petrol.2022.110806. ##
  7. Sadighian, H., Ahmadi, E., & Mohamadnia, Z. (2023). Application of imidazolium based ionic liquids grafted on microcrystalline cellulose as demulsifiers for water in crude oil (W/O) emulsions, Carbohydrate Polymer, 302, 120406, doi: 10.1016/j.carbpol.2022.120406. ##
  8. Dhandhi, Y., Prakash, O., Naiya, T. K., & Guria, C. (2022). Statistical design and process optimization for using chemical demulsifiers for the dehydration of the crude oil, Journal of Petroleum Science and Engineering, 217, 110876, doi: 10.1016/j.petrol.2022.110876. ##
  9. Hjartnes, T. N., Sørland, G. H., Simon, S., & Sjöblom, J. (2019). Demulsification of crude oil emulsions tracked by pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Part I: Chemical demulsification, Industrial & Engineering Chemistry Research, 58: 6, 2310-2323, doi: 10.1021/acs.iecr.8b05165. ##
  10. Shubair, A., Al-Salih, H., Sabouni, R., Gomaa, H., Hassanin, S., Salem, S., & Zaka, A. (2021). Photocatalytic demulsification of oil/water emulsions containing nonionic surfactant, Environmental Science and Pollution Research (ESPR), 28, 13124-13132, doi:10.1007/s11356-020-11541-1. ##
  11. Ye, F., Wang, Z., Mi, Y., Kuang, J., Jiang, X., Huang, Z., & Zhang, Z. (2020). Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124251, doi: 10.1016/j.colsurfa.2019.124251. ##
  12. Fong, K. K., Tan, I. S., Foo, H. C. Y., Lam, M. K., Tiong, A. C. Y., & Lim, S. (2021). Optimization and evaluation of reduced graphene oxide hydrogel composite as a demulsifier for heavy crude oil-in-water emulsion, Chinese Journal of Chemical Engineering, 33, 297-305, doi: 10.1016/j.cjche.2020.08.027. ##
  13. Chang, S. M., Hou, C. Y., Lo, P. H., & Chang, C. T. (2009). Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals, Applied Catalysis B: Environmental, 90, 233-241, doi: 10.1016/j.apcatb.2009.03.009. ##
  14. Seetharaman, A., & Dhanuskodi, S. (2014). Micro-structural, linear and nonlinear optical properties of titania nanoparticles. Spectrochimica Acta Part A, 127, 543-549, doi: 10.1016/j.saa.2014.02.164. ##
  15. Hassan, S. A., Abdalla, B. K., & Mustafa, M. A. (2019). Addition of silica nanoparticles for the enhancement of crude oil demulsification process, Petroleum Science and Technology, 37, 1603-1611, doi:10.1080/10916466.2019.1602634.
  16. Xue, Z., Cao, Y., Liu, N., Feng, L., & Jiang, L. (2014). Special wettable materials for oil/water separation, Journal of Materials Chemistry A, 2, 2445-2460, doi:10.1039/C3TA13397D. ##
  17. Xu, H., Jia, W., Ren, S., & Wang, J. (2019). Magnetically responsive multi-wall carbon nanotubes as recyclable demulsifier for oil removal from crude oil-in-water emulsion with different pH levels, Carbon, 145, 229-239, doi: 10.1016/j.carbon.2019.01.024. ##
  18. Ye, F., Wang, Z., Mi, Y., Kuang, J., Jiang, X., Huang, Z., & Zhang, Z. (2020). Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124251, doi: 10.1016/j.colsurfa.2019.124251. ##
  19. Nikkhah, M., Tohidian, T., Rahimpour, M. R., & Jahanmiri, A. (2015). Efficient demulsification of water-in-oil emulsion by a novel nano-titania modified chemical demulsifier, Chemical Engineering Research and Design, 94, 164-172, doi: 10.1016/j.cherd.2014.07.021. ##
  20. Jiang, X., Ye, F., Zheng, L., Mi, Y., Zhang, Z., Yuan, H., & Luo, Y. (2020). Multi‐walled carbon nanotubes grafted by polyvinyl alcohol and its demulsification performance in oily wastewater, Chemistry Select, 5: 26, 7895-7900, doi:10.1002/slct.202001792. ##
  21. Mombeshora, E. T., Simoyi, R., Nyamori, V. O., & Ndungu, P. G. (2015). Multi-walled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells, Journal of Chemical Education, 68, 153-164, doi:10.17159/0379-4350/2015/V68A22. ##
  22. Feinle, A., Elsaesser, M. S., & Huesing, N. (2016). Sol-gel synthesis of monolithic materials with hierarchical porosity, Chemical Society Reviews, 45, 3377-3399, doi: 10.1039/C5CS00710K. ##
  23. Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., & Knowles, J. C. (2016). Sol-gel based materials for biomedical applications, Progress in Materials Science, 77, 1-79, doi: 10.1016/j.pmatsci.2015.12.001. ##
  24. Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review, Energy Conversion and Management, 151, 630-640, doi: 10.1016/j.enconman.2017.09.021. ##
  25. Bigdeli, T., Shekarriz, M., Mehdizadeh, A., & Ahmadi, A. N. (2022). Eco-friendly and efficient demulsification by chitosan biopolymer modified with titanium ‎dioxide nanohybrid on carbonaceous substrates in (W/O) emulsions of crude oil, Journal of Sol-Gel Science and Technology, doi;10.1007/s10971-022-05907-9. ##
  26. Zhao, G., Tian, Q., Liu, Q., & Han, G. (2005). Effects of HPC on the microstructure and hydrophilisity of sol-gel-derived TiO2 films, Surface and Coatings Technology, 198, 55-58, doi: 10.1016/j.surfcoat.2004.10.064. ##
  27. Razi, M., Rahimpour, M. R., Jahanmiri, A., & Azad, F. (2011) Effect of a different formulation of demulsifiers on the efficiency of chemical demulsification of heavy crude oil, Journal of Chemical & Engineering Data, 56, 2936-2945, doi: 10.1021/je2001733. ##
  28. Razi, M., Rahimpour, M. R., Jahanmiri, A., & Azad, F. (2011). Structural characterization of the sol-gel oxide powders from the ZnO-TiO2-SiO2 system, Superlattices and Microstructures, 42, 314-321, doi: 10.1016/j.spmi.2007.04.004. ##
  29. Wang, C., Xu, B. Q., Wang, X., & Zhao, J. (2005). Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture, Journal of Solid State Chemistry, 178, 3500-3506, doi: 10.1016/j.jssc.2005.09.005. ##
  30. Liao, M. H., Hsu, C. H., & Chen, D. H. (2006). Preparation and properties of amorphous titania-coated zinc oxide nanoparticles, Journal of Solid State Chemistry, 179, 2020-2026, doi: 10.1016/j.jssc.2006.03.042. ##
  31. Karthik, K., Pandian, S. K., & Jaya, N. V. (2010). Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol-gel method, Applied Surface Science, 256, 6829-6833, doi: 10.1016/j.apsusc.2010.04.096. ##
  32. Choi, H. C., Jung, Y. M., & Kim, S. B. (2005). Size effects in the Raman spectra of TiO2 nanoparticles, Vibrational Spectroscopy, 37, 33-38, doi: 10.1016/j.vibspec.2004.05.006. ##
  33. Truijen, I., Haeldermans, I., Van Bael, M. K., Van den Rul, H., D’Haen, J., Mullens, J., & Goossens, V. (2007). Influence of synthesis parameters on morphology and phase composition of porous titania layers prepared via water based chemical solution deposition, Journal of the European Ceramic Society, 27, 4537-4546, doi: 10.1016/j.jeurceramsoc.2007.02.200.
  34. Miao, L., Tanemura, S., Toh, S., Kaneko, K., & Tanemura, M. (2004). Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process, Journal of Crystal Growth, 264, 246-252, doi: 10.1016/j.jcrysgro.2003.12.027. ##
  35. Ren, D., Bei, Z., Shen, J., Cui, X., Yang, X., & Zhang, Z. (2005). The structure change and the superhydrophilicity of the Sb-doped titanium dioxide thin film, Journal of Sol-Gel Science and Technology, 34, 123-126, doi:10.1007/s10971-005-1330-4.
  36. Xinshu, N. I. U., Sujuan, L. I., Huihui, C. H. U., & Jianguo, Z. H. O. U. (2011). Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities foe methyl orange degradation, Journal of Rare Earths, 29, 225-229, doi:10.1016/S1002-0721(10)60435-8. ##
  37. Chen, C., Wang, Z., Ruan, S., Zou, B., Zhao, M., & Wu, F. (2008). Photocatalytic degradation of CI Acid orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method, Dyes and Pigments, 77, 204-209, doi: 10.1016/j.dyepig.2007.05.003. ##
  38. Akpan, U. G., & Hameed, B. H. (2010). The advancements in sol-gel method of doped-TiO2 photocatalysts, Applied Catalysis A: General, 375, 1-11, doi: 10.1016/j.apcata.2009.12.02.3##
  39. Li, Y., Peng, S., Jiang, F., Lu, G., & Li, S. (2007). Effect of doping TiO2 with alkaline-earthmetal ions on its photocata-lytic activity, Journal of the Serbian Chemical Society - JSCS, 72, 393-402, doi:10.2298/JSC0704393L. ##
  40. Sharma, M., Kumar, S., & Pandey, O. P. (2010). Study of energy transfer from capping agents to intrinsic vacancies/defects in passivated ZnS nanoparticles, Journal of Nanoparticle Research, 12, 2655-2666, doi: 10.1007/s11051-009-9844-2. ##
  41. Zachariah, A., Baiju, K. V., Shukla, S., Deepa, K. S., James, J., & Warrier, K. G. K. (2008). Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol−gel solvent mixing and calcination, The Journal of Physical Chemistry C, 112, 30, 11345-11356, doi: 10.1021/jp712174y. ##