N2-bubbling Method for O2 Removal from the Loaded MEA Solution in the CO2 Capture Process

Document Type : Research Paper

Authors

1 Gas Refining Technology Group, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.

2 Gas Refining Technology Group, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.\Natural Gas Sweetening Group, Gas Processing Institute (GPI), Tehran, Iran.

3 Downstream Research Center, Research Institute of Petroleum Industry (RIPI),Tehran, Iran

4 Department of Chemical Engineering, Universiti of Teknologi Petronas, malysia

10.22078/jpst.2023.5123.1880

Abstract

Flue gas stream contains full-oxidized (carbon dioxide), partially oxidized hydrocarbons, and some extent of oxygen. Carbon dioxide can be separated by CO2 capture and separation (CCS) process using monoethanolamine (MEA). In this process, CO2 accompanied with O2 can be absorbed by the solution (MEA+H2O). Dissolved molecular oxygen may explicitly participate in the cathodic reaction and generate sever corrosion problems, or it may induce amine degradation via irreversible oxidative reaction, reducing amine efficiency. In this research, the method of N2-bubbling was investigated for deoxygenation of loaded aqueous MEA solution on a laboratory scale. N2-bubbling set-up was simulated with a known volume glass vessel in which bubbling of N2 with an available flow rate was applied through the loaded amine solution. A mathematical formula was developed to correlate the N2-bubbling flow rate, F, the volume of amine solution in the bubbling column, V, and time taking the oxygen concentration decreases from saturated O2-solution to less than 0.5 mg/L.

Keywords


  1. Lepaumier, H., Picq, D., & Carrette, P. L. (2009). New amines for CO2 I. Mechanisms of amine degradation in the presence of CO2, Industrial & Engineering Chemistry Research, 48(20), 9061-9067, doi.org/10.1021/ie900472x.##
  2. Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652-1659, doi.org/10.1016/j.egypro.2011.02.037. ##
  3. Strazisar, B. R., Anderson, R. R., & White, C. M. (2001). Degradation of monoethanolamine used in carbon dioxide capture from flue gas of a coal-fired electric power generating station (No. DOE/NETL-2001/1144), National Energy Technology Laboratory, Pittsburgh, PA (United States). ##
  4. Strazisar, B. R., Anderson, R. R., & White, C. M. (2003). Degradation pathways for monoethanolamine in a CO2 capture facility, Energy & Fuels, 17(4), 1034-1039, doi.org/10.1021/ef020272i. ##
  5. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673, doi.org/10.1021/ie901053s. ##
  6. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2006). Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. Industrial & Engineering Chemistry research, 45(8), 2437-2451, doi.org/10.1021/ie050559d. ##
  7. Bello, A., & Idem, R. O. (2006). Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases, Industrial & Engineering chemistry research, 45(8), 2569-2579, doi.org/10.1021/ie050562x. ##
  8. Chi, S., & Rochelle, G. T. (2002). Oxidative degradation of monoethanolamine, Industrial & engineering Chemistry Research, 41(17), 4178-4186, doi.org/10.1021/ie010697c. ##
  9. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673, doi.org/10.1021/ie901053s. ##
  10. Goff, G. S., & Rochelle, G. T. (2006). Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes, Industrial & Engineering Chemistry Research, 45(8), 2513-2521, doi.org/10.1021/ie0490031. ##
  11. Goff, G. S., & Rochelle, G. T. (2004). Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions, Industrial & Engineering Chemistry Research, 43(20), 6400-6408, doi.org/10.1021/ie0400245. ##
  12. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2009). Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams, International Journal of Greenhouse Gas Control, 3(2), 133-142, doi.org/10.1016/j.ijggc.2008.06.009. ##
  13. Uyanga, I. J., & Idem, R. O. (2007). Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams, Industrial & Engineering Chemistry Research, 46(8), 2558-2566, doi.org/10.1021/ie0614024. ##
  14. Challis BC, Challis JC. The chemistry of functional groups, the chemistry of amino, nitroso and nitro compounds and their derivates, Supplement F, Part 2. In: Pataï edn, N-nitrosamines and N-nitrosoimines. (Wiley, 1982), 1151–1223, doi.org/10.1002/9780470771679.ch11. ##
  15. Loeppky, R. N., & Michejda, C. J. (Eds.). (1994). Nitrosamines and related N-nitroso compounds: chemistry and biochemistry, American Chemical Society, doi: 10.1021/bk-1994-0553. ##
  16. Williams LH. N-Nitrosation, (1988), A Method for O2 Removal from the Loaded MEA Solution in the CO2 Capture Process, Doctroal Thesis, Cambridge University Press, Cambridge, 1988, 77–112. ##
  17. Tanthapanichakoon, W., Veawab, A., & McGarvey, B. (2006). Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 Capture Plants Using Aqueous Solution of MEA, Industrial & engineering chemistry research, 45(8), 2586-2593, doi.org/10.1021/ie050575a. ##
  18. Martić, I., Maslarević, A., Mladenović, S., Lukić, U., & Budimir, S. (2015). Water deoxygenation using hollow fiber membrane module with nitrogen as inert gas, Desalination and Water Treatment, 54(6), 1563-1567, doi.org/10.1080/19443994.2014.888677. ##
  19. Lausier, J. M., Gerraughty, R. J., & Paruta, A. N. (1971). Efficient deoxygenation of water by gas permeation, Journal of Pharmaceutical Sciences, 60(12), 1906-1907, doi.org/10.1002/jps.2600601240. ##
  20. Ito, A., Yamagiwa, K., Tamura, M., & Furusawa, M. (1998). Removal of dissolved oxygen using non-porous hollow-fiber membranes, Journal of Membrane Science, 145(1), 111-117, doi.org/10.1016/S0376-7388(98)00068-4. ##
  21. Polyanskii, L. N., Gorshkov, V. S., Vakhnin, D. D., & Kravchenko, T. A. (2015). Sorption-membrane system for deep deoxygenation of water, Nanotechnologies in Russia, 10, 558-564. ##
  22. Butler, I.B, Schoonen, M.A.A., Rickard, D.T. Removal of dissolved oxygen from water: a comparison of four common techniques, Talanta 41 (1994) 211–215, doi.org/10.1016/0039-9140(94)80110-X. ##
  23. Goff, G. S., & Rochelle, G. T. (2006). Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes, Industrial & Engineering Chemistry Research, 45(8), 2513-2521, doi.org/10.1021/ie0490031. ##
  24. Sexton, A. J., & Rochelle, G. T. (2009). Catalysts and inhibitors for oxidative degradation of monoethanolamine, International Journal of Greenhouse Gas Control, 3(6), 704-711, doi.org/10.1016/j.ijggc.2009.08.007. ##
  25. Voice, A. K., & Rochelle, G. T. (2014). Inhibitors of monoethanolamine oxidation in CO2 capture processes, Industrial & Engineering Chemistry Research, 53(42), 16222-16228, doi.org/10.1021/ie500996z. ##
  26. Léonard, G., Voice, A., Toye, D., & Heyen, G. (2014). Influence of dissolved metals and oxidative degradation inhibitors on the oxidative and thermal degradation of monoethanolamine in postcombustion CO2 capture, Industrial & Engineering Chemistry Research, 53(47), 18121-18129, doi.org/10.1021/ie5036572. ##
  27. Moon, J. S., Park, K. K., Kim, J. H., & Seo, G. (1999). The reduction reaction of dissolved oxygen in water by hydrazine over platinum catalyst supported on activated carbon fiber, Applied Catalysis A: General, 184(1), 41-48, doi.org/10.1016/S0926-860X (99)00086-1. ##
  28. Zekos, I., & Stack, M. M. (2019). A note on a design protocol for deoxygenation of water, Electrochemistry Communications, 103, 12-16, doi.org/10.1016/j.elecom.2019.04.009. ##
  29. Jalili, A. H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., & Ahmadi, A. N. (2009). Solubility of H2S in ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N], Journal of Chemical & Engineering Data, 54(6), 1844-1849, doi.org/10.1021/je8009495. ##
  30. Shokouhi, M., Farahani, H., Hosseini-Jenab, M., & Jalili, A. H. (2015). Solubility of hydrogen sulfide in N-methylacetamide and N, N-dimethylacetamide: experimental measurement and modeling, Journal of Chemical & Engineering Data, 60(3), 499-508, doi.org/10.1021/je500478t. ##
  31. Shokouhi, M., Farahani, H., & Hosseini-Jenab, M. (2014). Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide, Fluid Phase Equilibria, 367, 29-37, doi.org/10.1016/j.fluid.2014.01.020. ##
  32. Shokouhi, M., Rezaierad, A. R., Zekordi, S. M., Abbasghorbani, M., & Vahidi, M. (2016). Solubility of hydrogen sulfide in ethanediol, 1, 2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling, Journal of Chemical & Engineering Data, 61(1), 512-524, doi.org/10.1021/acs.jced.5b00680. ##
  33. Shokouhi, M., Jalili, A. H., & Zoghi, A. T. (2017). Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution, The Journal of Chemical Thermodynamics, 106, 232-242, doi.org/10.1016/j.jct.2016.11.025. ##
  34. Shokouhi, M., Farahani, H., Vahidi, M., & Taheri, S. A. (2017). Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone, Journal of Chemical & Engineering Data, 62(10), 3401-3408, doi.org/10.1021/acs.jced.7b00428.##
  35. NIST chemistry web book http://webbook.nist.gov/chemistry/fluid/ (accessed Oct. 2019). ##
  36. Najafloo, Mesurments and Thermodynamic Modeling of Carbon Dioxide Solubility at Low Loadings in N-methyldiethanolamine (MDEA) and 2-((2-aminoethyl) amino) ethanol (AEEA) Aqueous Solutions, Department of Chemical Engineering, Iran University of Science and Technology, 2015. ##