Optimization of an Integrated Natural Gas to Polypropylene Plant Using Sinus-Cosine Algorithm

Document Type : Research Paper

Authors

1 Faculty of Chemical Engineering, UFaculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran

2 Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran

10.22078/jpst.2023.5021.1853

Abstract

The main aim of this study is to simulate and optimize an integrated industrial natural gas (NG) to polypropylene (PP) plant (NGTPP). The optimization in this study aimed to increase the PP productivity as an objective function of the optimization problem. This plant consisted of four subunits: NG to synthesis gas, synthesis gas to methanol, MTP , and PTPP  units. After sensitivity analysis of all possible effective parameters, reformer temperature(TRef.gas), methanol reactor temperature(TMeOH), methanol reactor pressure (PMeOH), hydrocarbon return flow ratio to methanol reactor (RHC), PP reactor temperature(TPPR), PP reactor pressure(PPPR), Ticl4(MTicl4) and TEA(MTEA) inlet flow to PP reactor have been selected. These parameters were optimized using the Sinus-Cosine Algorithm(SCA). Optimal obtained results showed that the TRef.gas, TMeOH, PMeOH, RHC, TPPR, PPPR, MTicl4, and MTEA equal 875.53 0C, 225.91 0C, 140.87 bar, 0.7, 55.19 0C, -1.96 bar, 107.97 kg/h, and 3.93 kg/h, consequently. Maximum PP productivity was 7058.85 kg/hr at the optimum point.

Keywords


  1. Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., & Songolzadeh, R. (2014). Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal, doi.org/10.1155/2014/828131.##
  2. Beheshti, M. (2014). Simulation and Study the effects of operational parameters on Methanol To Propylene Process, Farayandno, 9(45), 36-56, doi: 20.1001.1.17356466.1393.9.45.4.6. ##
  3. Rodríguez-Vallejo, D. F., Guillén-Gosálbez, G., & Chachuat, B. (2020). What is the true cost of producing propylene from methanol? The role of externalities, ACS Sustainable Chemistry & Engineering, 8(8), 3072-3081, doi.org/10.1021/acssuschemeng.9b05516. ##
  4. Maria de Fátima, V. M., da Silva Cardoso, R., & da Silva, M. G. (2010). Preparation of MgCl2-supported Ziegler–Natta catalyst systems with new electron donors, Applied Catalysis A: General, 374(1-2), 65-70, doi.org/10.1016/j.apcata.2009.11.027. ##
  5. Soares, J. B. (2001). Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: a review, Chemical Engineering Science, 56(13), 4131-4153, doi.org/10.1016/S0009-2509(01)00083-5. ##
  6. Moballegh, L., Hakim, S., Morshedian, J., & Nekoomanesh, M. (2015). Investigating effects of using mixtures of two external electron donors on microstructure and properties of polypropylene/poly (ethylene‐co‐propylene) in‐reactor blends based on ziegler–natta catalyst, Macromolecular Reaction Engineering, 9(4), 350-359, doi.org/10.1002/mren.201500002. ##
  7. Taniike, T., & Terano, M. (2013). The use of donors to increase the isotacticity of polypropylene, Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and Polypropylene, 81-97, doi:10.1007/12-2013-224. ##
  8. Suhm, J., Heinemann, J., Wörner, C., Müller, P., Stricker, F., Kressler, J., & Mülhaupt, R. (1998). Novel polyolefin materials via catalysis and reactive processing, In Macromolecular Symposia, 129(1), 1-28, Basel: Hüthig & Wepf Verlag, doi.org/10.1002/masy.19981290103. ##
  9. Chang, H., Li, H., Zheng, T., Zhang, L., Yuan, W., Li, L., ... & Hu, Y. (2013). Characterization of the effects of the C/N mixed external donors on the stereo-defects distribution of polypropylene by successive self-nucleating and annealing and 13 C-NMR techniques, Journal of Polymer Research, 20, 1-8, doi:10.1007/s10965-013-0207-4. ##
  10. Alshaiban, A., & Soares, J. B. (2012). Effect of Hydrogen and External Donor on Propylene Polymerization Kinetics with a 4th‐Generation Ziegler‐Natta Catalyst, Macromolecular Reaction Engineering, 6(6‐7), 265-274, doi.org/10.1002/mren.201200002. ##
  11. Lima, A., Azeredo, A. P., Nele, M., Liberman, S., & Pinto, J. C. (2014). Synthesis and characterization of diolefin/propylene copolymers by ziegler‐natta polymerization, In Macromolecular Symposia, 344, (1), 86-93, doi.org/10.1002/masy.201400015. ##
  12. Groppo, E., Seenivasan, K., & Barzan, C. (2013). The potential of spectroscopic methods applied to heterogeneous catalysts for olefin polymerization, Catalysis Science & Technology, 3(4), 858-878. ##
  13. Busico, V., Cipullo, R., Friederichs, N., Ronca, S., & Togrou, M. (2003). The first molecularly characterized isotactic polypropylene-b lock-polyethylene obtained via “Quasi-Living” insertion polymerization, Macromolecules, 36(11), 3806-3808, doi.org/10.1021/ma0342527. ##
  14. Yu, E. Y., & Choi, B. R. (1996). The effects of prepolymerization on propylene polymerization with Mg (OC2H5) 2-supported catalyst, Journal of Industrial and Engineering Chemistry, 2(1), 7-17. ##
  15. Andoni, A., Chadwick, J. C., Niemantsverdriet, J. W., & Thüne, P. C. (2009). Investigation of planar Ziegler-Natta model catalysts using attenuated total reflection infrared spectroscopy, Catalysis letters, 130, 278-285. ##
  16. Zahedi, R., Afshar Taremi, F., & Jamjah, R. (2021). Comparison of the effects of ethers compounds as the new internal donors on ziegler-natta catalysts for polymerization of propylene, Nashrieh Shimi va Mohandesi Shimi Iran, 40(3), 103-119, doi: 20.1001.1.10227768.1400.40.3.9.8. ##
  17. Zhang, H.-X., Lee, Y.-J., Park, J.-R., Lee, D.-H., & Yoon, K.-B. J. M. R. (2011) Control of molecular weight distribution for polypropylene obtained by commercial Ziegler-Natta catalyst: Effect of electron donor, Macromolecular Research, 19(6), 622-628, doi:10.1007/s13233-011-0614-5. ##
  18. Lin, B., Zhang, Q., & Wang, Y. (2009). Catalytic conversion of ethylene to propylene and butenes over H− ZSM-5. Industrial & engineering chemistry research, 48(24), 10788-10795, doi.org/10.1021/ie901227p. ##
  19. He, T. C., Cheng, X. H., Li, L., & Meng, G. Y. (2009). Study of methanol-to-gasoline process for production of gasoline from coal, Journal of Coal Science and Engineering, China, 15, 104-107, doi:10.1007/s12404-009-0121-x. ##
  20. Mostafa, J., Alireza, B., and Kamran, G. (1396). Simulation of new plant arrangement of fgtg process zero emission concept, 5th International Recent Inovations in Chemistry and Chemical Engineering. ##
  21. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies, Catalysis today, 139(4), 244-260, . ##
  22. Pauls, J. H., Mahinpey, N., Mostafavi, E. J. B., and bioenergy (2016). Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: A comprehensive model including pyrolysis, hydrodynamics and tar production, Biomass and Bioenergy, 95, 157-166, doi:10.1016/j.biombioe.2016.10.002. ##
  23. Rahnama, H., Farniaei, M., Abbasi, M., & Rahimpour, M. R. (2014). Modeling of synthesis gas and hydrogen production in a thermally coupling of steam and tri-reforming of methane with membranes, Journal of Industrial and Engineering Chemistry, 20(4), 1779-1792, doi.org/10.1016/j.jiec.2013.08.032. ##
  24. Boukha, Z., Gil-Calvo, M., de Rivas, B., Gonzalez-Velasco, J. R., Gutierrez-Ortiz, J. I., & López-Fonseca, R. (2018). Behaviour of Rh supported on hydroxyapatite catalysts in partial oxidation and steam reforming of methane: on the role of the speciation of the Rh parti cles, Applied Catalysis A: General, 556, 191-203, doi.org/10.1016/j.apcata.2018.03.002. ##
  25. Abdullah, B., Abd Ghani, N. A., & Vo, D. V. N. (2017). Recent advances in dry reforming of methane over Ni-based catalysts, Journal of Cleaner Production, 162, 170-185, doi.org/10.1016/j.jclepro.2017.05.176. ##
  26. Budiman, A. W., Song, S. H., Chang, T. S., Shin, C. H., & Choi, M. J. (2012). Dry reforming of methane over cobalt catalysts: a literature review of catalyst development, Catalysis Surveys from Asia, 16, 183-197, doi:10.1007/s10563-012-9143-2. ##
  27. San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M. J., & Román-Martínez, M. C. (2009). Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane, Applied Catalysis A: General, 371(1-2), 54-59, doi.org/10.1016/j.apcata.2009.09.026. ##
  28. Challiwala, M. S., Ghouri, M. M., Sengupta, D., El-Halwagi, M. M., & Elbashir, N. O. (2017). A process integration approach to the optimization of CO2 utilization via tri-reforming of methane, In Computer Aided Chemical Engineering, 40, 1993-1998, Elsevier, doi.org/10.1016/B978-0-444-63965-3.50334-2. ##
  29. dos Santos, R. O., de Sousa Santos, L., & Prata, D. M. (2018). Simulation and optimization of a methanol synthesis process from different biogas sources, Journal of Cleaner Production, 186, 821-830, doi.org/10.1016/j.jclepro.2018.03.108. ##
  30. Chen, L., Gangadharan, P., & Lou, H. H. (2018). Sustainability assessment of combined steam and dry reforming versus tri‐reforming of methane for syngas production, Asia‐Pacific Journal of Chemical Engineering, 13(2), e2168, doi.org/10.1002/apj.2168. ##
  31. Taji, M., Farsi, M., & Keshavarz, P. (2018). Real time optimization of steam reforming of methane in an industrial hydrogen plant, International Journal of Hydrogen Energy, 43(29), 13110-13121, doi.org/10.1016/j.ijhydene.2018.05.094. ##
  32. Chen, L., Gangadharan, P., & Lou, H. H. (2018). Sustainability assessment of combined steam and dry reforming versus tri‐reforming of methane for syngas production, Asia‐Pacific Journal of Chemical Engineering, 13(2), e2168, doi.org/10.1002/apj.2168. ##
  33. Nian, C. W., & You, F. (2013). Design of methanol plant, In EURECHA Student Contest Problem Competition ESCAPE-23 Symp, 25. ##
  34. Cañete, B., Gigola, C. E., & Brignole, N. B. (2014). Synthesis gas processes for methanol production via CH4 reforming with CO2, H2O, and O2. Industrial & Engineering Chemistry Research, 53(17), 7103-7112, doi.org/10.1021/ie404425e. ##
  35. Chang, C. D., Chu, C. T., & Socha, R. F. (1984). Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3, Journal of Catalysis, 86(2), 289-296, doi.org/10.1016/0021-9517(84)90374-9. ##
  36. Masuduzzaman, & Rangaiah, G. P. (2009). Multi-objective optimization applications in chemical engineering. Multi-Objective Optimization, Techniques and Applications in Chemical Engineering (With CD-ROM), 27-59, doi.org/10.1142/9789812836526_0002. ##
  37. Suid, M. H., Ahmad, M. A., Ismail, M. R. T. R., Ghazali, M. R., Irawan, A., & Tumari, M. Z. (2018, December). An improved sine cosine algorithm for solving optimization problems, In 2018 IEEE Conference on Systems, Process and Control (ICSPC), 209-213, doi:10.1109/SPC.2018.8703982. ##
  38. Gabis, A. B., Meraihi, Y., Mirjalili, S., & Ramdane-Cherif, A. (2021). A comprehensive survey of sine cosine algorithm: variants and applications, Artificial Intelligence Review, 54(7), 5469-5540, doi.org/10.1007/s10462-021-10026-y. ##
  39. Gupta, S. (2022). Enhanced sine cosine algorithm with crossover: A comparative study and empirical analysis. Expert Systems with Applications, 198, 116856, doi.org/10.1016/j.eswa.2022.116856. ##
  40. Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133, doi.org/10.1016/j.knosys.2015.12.022. ##
  41. HYSYS, A. (2007). User’s Guide. Aspen Technology, Inc., Burlington, Massachusetts. ##
  42. Nocedal, J., & Wright, S. J. (Eds.). (1999). Numerical optimization, New York, NY: Springer New York. ##
  43. AlRashidi, M. R., & El-Hawary, M. E. (2007). Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects, IEEE transactions on power systems, 22(4), 2030-2038, doi: 10.1109/TPWRS.2007.907375. ##
  44. Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey, Applied Soft Computing, 11(6), 4135-4151, doi.org/10.1016/j.asoc.2011.02.032. ##
  45. Lazar, A. (2002). Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, In Heuristic and Optimization for Knowledge Discovery, 263-278, IGI Global, doi: 10.4018/978-1-930708-26-6.ch014.
  46. Rutitis, D., Smoca, A., Uvarova, I., Brizga, J., Atstaja, D., & Mavlutova, I. (2022). Sustainable value chain of industrial biocomposite consumption: influence of COVID-19 and consumer Behavior, Energies, 15(2), 466, doi.org/10.3390/en15020466. ##