Distribution of Oil, Water, and Ions Near the Neutral Calcite Surface in the Presence of Low and High Salinity Water: Molecular Dynamics Simulation

Document Type : Research Paper


1 Amirkabir University of Technology - Mahshahr Campus, Bandar-e Mahshahr, Khuzestan, Iran

2 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran

3 School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran


Low salinity water flooding has a significant impact on the recovery of carbonate reservoirs. In this paper, the molecular dynamics simulation was carried out to investigate the distribution of ions (Na+, Cl-, Ca2+, Mg2+, and SO42-), water, and oil molecules near the calcite surface (the temperature of 360 K). The results show that the polar component of oil, compared to the non-polar components, tends more to the calcite surface. Additionally, the bulk of oil in brine-containing environments gradually moves away from the surface. Water molecules exhibit simultaneous movement towards the surface, forming two distinct layers near the surface and hydrating the calcite surface. Based on the water’s radial distribution function, it can be observed that the hydrogen atom is closest to the surface within the second layer of water molecules. In contrast, the oxygen atom is in closest proximity to it in the first. Ions displayed concurrent movement towards the surface in conjunction with the motion of water molecules. The ion dispersion gives rise to the forming of an electrical double layer near the surface. Compared to other ions, the closeness of sodium and chlorine ions to the surface leads to creating a layer with a positive charge. The presence of an electrical layer induces the migration of polar oil molecules from the surface. The distribution of Mg2+ and Ca2+ ions indicates that Mg2+ has a stronger surface accumulation tendency than Ca2+.


  1. Green, D. W., & Willhite, G. P. (1998). Enhanced oil recovery, 6, 143-154, Richardson, TX: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, ISBN: 978-1-61399-494-8. ##
  2. Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 199-208, doi.org/10.1016/j.colsurfa.2006.12.058. ##
  3. Sharma, H., & Mohanty, K. K. (2018). An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates. Journal of Petroleum Science and Engineering, 165, 1021-1039, https://doi.org/https://doi.org/10.1016/j.petrol.2017.11.052. ##
  4. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2010, October). Laboratory investigation of novel oil recovery method for carbonate reservoirs, In Canadian Unconventional Resources and International Petroleum Conference, OnePetro, doi.org/10.2118/137634-MS. ##
  5. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy & Fuels, 29(3), 1352-1367, doi.org/10.1021/ef5023847. ##
  6. Gandomkar, A., & Rahimpour, M. R. (2015). Investigation of low-salinity waterflooding in secondary and tertiary enhanced oil recovery in limestone reservoirs, Energy & Fuels, 29(12), 7781-7792, doi.org/10.1021/acs.energyfuels.5b01236. ##
  7. Austad, T., Shariatpanahi, S. F., Strand, S., Black, C. J. J., & Webb, K. J. (2012). Conditions for a low-salinity enhanced oil recovery (EOR) effect in carbonate oil reservoirs, Energy & Fuels, 26(1), 569-575, doi.org/10.1021/ef201435g. ##
  8. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2011). Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reservoir Evaluation & Engineering, 14(05), 578-593, doi.org/10.2118/137634-PA. ##
  9. Alotaibi, M. B., & Nasr-El-Din, H. A. (2009, June). Effect of brine salinity on reservoir fluids interfacial tension. In SPE Europec featured at EAGE Conference and Exhibition? SPE-121569 doi.org/10.2118/121569-MS. ##
  10. Ayirala, S. C., Al-Saleh, S. H., & Al-Yousef, A. A. (2018). Microscopic scale interactions of water ions at crude oil/water interface and their impact on oil mobilization in advanced water flooding, Journal of Petroleum Science and Engineering, 163, 640-649, doi.org/https://doi.org/10.1016/j.petrol.2017.09.054. ##
  11. Liu, F., & Wang, M. (2022). Wettability effects on mobilization of ganglia during displacement. International Journal of Mechanical Sciences, 215, 106933, doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106933. ##
  12. Al-Shalabi, E. W., & Sepehrnoori, K. (2016). A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks, Journal of Petroleum Science and Engineering, 139, 137-161, doi.org/https://doi.org/10.1016/j.petrol.2015.11.027. ##
  13. Fathi, S. J., Austad, T., Strand, S., & Puntervold, T. (2010). Wettability alteration in carbonates: The effect of water-soluble carboxylic acids in crude oil. Energy & Fuels, 24(5), 2974-2979, doi.org/10.1021/ef901527h.
  14. Dubey, S. T., & Waxman, M. L. (1991). Asphaltene adsorption and desorption from mineral surfaces, SPE Reservoir Engineering, 6(03), 389-395., doi.org/10.2118/18462-PA. ##
  15. Zhang, P., & Austad, T. (2005, February). The relative effects of acid number and temperature on chalk wettability, In SPE International Conference on Oilfield Chemistry? SPE-92999, SPE., doi.org/10.2118/92999-MS. ##
  16. Xie, Q., He, S., & Pu, W. (2010). The effects of temperature and acid number of crude oil on the wettability of acid volcanic reservoir rock from the Hailar Oilfield, Petroleum Science, 7, 93-99, doi.org/10.1007/s12182-010-0011-2. ##
  17. Fathi, S. J., Austad, T., & Strand, S. (2012, April). Water-based enhanced oil recovery EOR by smart water in carbonate reservoirs, In SPE EOR conference at oil and gas West Asia, OnePetro, doi.org/10.2118/154570-MS. ##
  18. Zahid, A., Shapiro, A., & Skauge, A. (2012, April). Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach, In SPE EOR conference at oil and gas West Asia, SPE-155625, doi.org/10.2118/155625-MS. ##
  19. RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms, Energy & Fuels, 23(9), 4479-4485, doi.org/10.1021/ef900185q. ##
  20. Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., & Sorbie, K. S. (2008). Low salinity oil recovery-an experimental investigation1, Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 49(01), Paper Number: SPWLA-2008-v49n1a2. ##
  21. Puntervold, T., Strand, S., Ellouz, R., & Austad, T. (2015). Modified seawater as a smart EOR fluid in chalk. Journal of Petroleum Science and Engineering, 133, 440-443, doi.org/10.1016/j.petrol.2015.06.034. ##
  22. Puntervold, T., Strand, S., Ellouz, R., & Austad, T. (2015). Modified seawater as a smart EOR fluid in chalk, Journal of Petroleum Science and Engineering, 133, 440-443., doi.org/10.1016/j.fuel.2018.03.176. ##
  23. Den Ouden, L., Nasralla, R. A., Guo, H., Bruining, H., & Van Kruijsdijk, C. P. J. W. (2015). Calcite dissolution behaviour during low salinity water flooding in carbonate rock, In IOR 2015-18th European Symposium on Improved Oil Recovery, cp-445, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609.201412102. ##
  24. Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: chemical equilibria and rates in natural waters, John Wiley & Sons. ##
  25. Tetteh, J. T., Alimoradi, S., Brady, P. V., & Ghahfarokhi, R. B. (2020). Electrokinetics at calcite-rich limestone surface: Understanding the role of ions in modified salinity waterflooding. Journal of Molecular Liquids, 297, 111868, doi.org/https://doi.org/10.1016/j.molliq.2019.111868. ##
  26. Derjaguin, B. V. (1941). Theory of the stability of strongly charged lyophobic sol and of the adhesion of strongly charged particles in solutions of electrolytes, Acta phys. chim. URSS, 14, 633. ##
  27. Lager, A., Webb, K. J., & Black, C. J. J. (2007, April). Impact of brine chemistry on oil recovery, In IOR 2007-14th European symposium on improved oil recovery, 24, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609-pdb.24. A24. ##
  28. Strand, S., Puntervold, T., & Austad, T. (2008). Effect of temperature on enhanced oil recovery from mixed-wet chalk cores by spontaneous imbibition and forced displacement using seawater, Energy & Fuels, 22(5), 3222-3225, doi.org/10.1021/ef800244v. ##
  29. Tweheyo, M. T., Zhang, P., & Austad, T. (2006, April). The effects of temperature and potential determining ions present in seawater on oil recovery from fractured carbonates, In SPE Improved Oil Recovery Conference? SPE-99438, doi.org/10.2118/99438-MS. ##
  30. Shehata, A. M., Alotaibi, M. B., & Nasr-El-Din, H. A. (2014). Waterflooding in carbonate reservoirs: Does the salinity matter? SPE Reservoir Evaluation & Engineering, 17(03), 304-313, doi.org/10.2118/170254-PA. ##
  31. Austad, T., Strand, S., & Puntervold, T. (2009, September). Is wettability alteration of carbonates by seawater caused by rock dissolution, In Paper SCA2009-43 presented at the International Symposium of the Society of Core Analysts held in Noordwijk, The Netherlands, 27-30. ##
  32. Karoussi, O., & Hamouda, A. A. (2007). Imbibition of sulfate and magnesium ions into carbonate rocks at elevated temperatures and their influence on wettability alteration and oil recovery, Energy & Fuels, 21(4), 2138-2146, doi.org/10.1021/ef0605246. ##
  33. Derkani, M. H., Fletcher, A. J., Fedorov, M., Abdallah, W., Sauerer, B., Anderson, J., & Zhang, Z. J. (2019). Mechanisms of surface charge modification of carbonates in aqueous electrolyte solutions, Colloids and Interfaces, 3(4), 62, doi.org/10.3390/colloids3040062. ##
  34. Liu, Q., Yuan, S., Yan, H., & Zhao, X. (2012). Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: molecular dynamics simulations, The Journal of Physical Chemistry B, 116(9), 2867-2875, doi.org/10.1021/jp2118482. ##
  35. Wang, S., Li, Z., Liu, B., Zhang, X., & Yang, Q. (2015). Molecular mechanisms for surfactant-aided oil removal from a solid surface, Applied Surface Science, 359, 98-105, doi.org/10.1016/j.apsusc.2015.10.068. ##
  36. Koleini, M. M., Badizad, M. H., Kargozarfard, Z., & Ayatollahi, S. (2019). Interactions between rock/brine and oil/brine interfaces within thin brine film wetting carbonates: a molecular dynamics simulation study, Energy & Fuels, 33(9), 7983-7992, doi.org/10.1021/acs.energyfuels.9b00496. ##
  37. Wang, Y. F., Li, Z. Y., Zhang, S. M., Liu, D. X., & Ding, M. C. (2021). Remaining oil distribution in models with different heterogeneities after CO2 WAG injection: visual research by nuclear magnetic resonance technique, Journal of Central South University, 28(5), 1412-1421, doi.org/10.1007/s11771-021-4712-z. ##
  38. Abbasi, S., Khosravi-Nikou, M. R., & Shariati, A. (2023). Selective separation of propane from the propylene-propane mixture using pure silica zeolites: A molecular dynamic simulation, Chemical Engineering and Processing-Process Intensification, 184, 109294, doi.org/https://doi.org/10.1016/j.cep.2023.109294. ##
  39. Zhao, J., Yao, G., Ramisetti, S. B., Hammond, R. B., & Wen, D. (2018). Molecular dynamics simulation of the salinity effect on the n-decane/water/vapor interfacial equilibrium. Energy & Fuels, 32(11), 11080-11092, doi.org/10.1021/acs.energyfuels.8b00706. ##
  40. Zhao, J., Yao, G., Ramisetti, S. B., Hammond, R. B., & Wen, D. (2019). Molecular dynamics investigation of substrate wettability alteration and oil transport in a calcite nanopore, Fuel, 239, 1149-1161, doi.org/10.1016/j.fuel.2018.11.089. ##
  41. Aminian, A., & ZareNezhad, B. (2019). Oil-detachment from the calcium carbonate surfaces via the actions of surfactant, nanoparticle and low salinity brine: an insight from molecular dynamic simulation, Chemical Engineering Science, 202, 373-382, doi.org/https://doi.org/10.1016/j.ces.2019.03.031. ##
  42. Koleini, M. M., Badizad, M. H., Ghatee, M. H., & Ayatollahi, S. (2019). An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs, Journal of Molecular Liquids, 293, 111530, doi.org/https://doi.org/10.1016/j.molliq.2019.111530. ##
  43. Kim, S., Marcano, M. C., & Becker, U. (2019). Mechanistic study of wettability changes on calcite by molecules containing a polar hydroxyl functional group and nonpolar benzene rings. Langmuir, 35(7), 2527-2537, doi.org/10.1021/acs.langmuir.8b03666. ##
  44. Santos, M. S., Castier, M., & Economou, I. G. (2019). Molecular dynamics simulation of electrolyte solutions confined by calcite mesopores, Fluid Phase Equilibria, 487, 24-32, doi.org/10.1016/j.fluid.2019.01.001. ##
  45. Li, H., Vovusha, H., Sharma, S., Singh, N., & Schwingenschlögl, U. (2020). Mechanism of wettability alteration of the calcite {101 [combining macron] 4} surface, Physical Chemistry Chemical Physics, 22(27), 15365-15372, doi.org/10.1039/D0CP01715A. ##
  46. Badizad, M. H., Koleini, M. M., Greenwell, H. C., Ayatollahi, S., Ghazanfari, M. H., & Mohammadi, M. (2020). Ion-specific interactions at calcite–brine interfaces: a nano-scale study of the surface charge development and preferential binding of polar hydrocarbons. Physical Chemistry Chemical Physics, 22(48), 27999-28011, doi.org/10.1039/D0CP04828C. ##
  47. Tohidi, Z., Jafari, A., & Omidkhah, M. (2021). Electrolyte nanofluid performance on the oil detachment from an oil-wetted carbonate surface: Water channel formation using molecular dynamics simulation. Journal of Petroleum Science and Engineering, 196, 108006, doi.org/https://doi.org/10.1016/j.petrol.2020.108006. ##
  48. Ghasemi, M., Shafiei, A., & Foroozesh, J. (2022). A systematic and critical review of application of molecular dynamics simulation in low salinity water injection, Advances in Colloid and Interface Science, 300, 102594, doi.org/https://doi.org/10.1016/j.cis.2021.102594. ##
  49. Markgraf, S. A., & Reeder, R. J. (1985). High-temperature structure refinements of calcite and magnesite. American Mineralogist, 70(5-6), 590-600. ##
  50. de Leeuw, N. H., & Parker, S. C. (1998). Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach, The Journal of Physical Chemistry B, 102(16), 2914-2922, doi.org/10.1021/jp973210f. ##
  51. Graf, D. L. (1961). Crystallographic tables for the rhombohedral carbonates, American Mineralogist, Journal of Earth and Planetary Materials, 46(11-12), 1283-1316. ##
  52. Zhang, Y., & Sarma, H. (2012, November). Improving waterflood recovery efficiency in carbonate reservoirs through salinity variations and ionic exchanges: A promising low-cost” smart-waterflood” approach, In Abu Dhabi International Petroleum Exhibition and Conference, SPE-161631, doi.org/10.2118/161631-MS. ##
  53. Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations, Journal of computational chemistry, 30(13), 2157-2164, doi.org/10.1002/jcc.21224. ##
  54. Lima, F. C. D. A., da Silva Alvim, R., & Miranda, C. R. (2020). Selective dissociation of benzoic acid on carbonate surfaces: A density functional theory perspective, Applied Surface Science, 529, 147103, doi.org/10.1016/j.apsusc.2020.147103. ##
  55. Xiao, S., Edwards, S. A., & Gräter, F. (2011). A new transferable forcefield for simulating the mechanics of CaCO3 crystals, The Journal of Physical Chemistry C, 115(41), 20067-20075, doi.org/10.1021/jp202743v. ##
  56. Price, D. J., & Brooks III, C. L. (2004). A modified TIP3P water potential for simulation with Ewald summation, The Journal of Chemical Physics, 121(20), 10096-10103, doi.org/10.1063/1.1808117. ##
  57. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, Journal of the American Chemical Society, 118(45), 11225-11236, doi.org/10.1021/ja9621760. ##
  58. Williams, C. D., Burton, N. A., Travis, K. P., & Harding, J. H. (2014). The Development of a Classical Force Field to Determine the Selectivity of an Aqueous Fe3+–Eda Complex for Tco4–and So42–. Journal of Chemical Theory and Computation, 10(8), 3345-3353, doi.org/10.1021/ct500198c. ##
  59. Lorentz, H. A. (1881). Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase, Annalen der physik, 248(1), 127-136, doi.org/https://doi.org/10.1002/andp.18812480110. ##
  60. Berthelot, Sur le mélange des gaz, Compt. Rendus. 126 (1898) 15. ##
  61. Plimpton S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of computational physics, 117 (1995) 1–19, doi.org/10.1006/jcph.1995.1039. ##
  62. Swope, W. C., Andersen, H. C., Berens, P. H., & Wilson, K. R. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, 76(1), 637-649, doi.org/10.1063/1.442716. ##
  63. Hockney, R. W., & Eastwood, J. W. (2021). Computer simulation using particles. crc Press.
  64. Yeh, I. C., & Berkowitz, M. L. (1999). Ewald summation for systems with slab geometry, The Journal of Chemical Physics, 111(7), 3155-3162, doi.org/10.1063/1.479595. ##
  65. Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics, 81(1), 511-519, doi.org/10.1063/1.447334. ##
  66. Ataman, E., Andersson, M. P., Ceccato, M., Bovet, N., & Stipp, S. L. S. (2016). Functional group adsorption on calcite: I. Oxygen containing and nonpolar organic molecules. The Journal of Physical Chemistry C, 120(30), 16586-16596, doi.org/10.1021/acs.jpcc.6b01349. ##
  67. Chiarello, R. P., Wogelius, R. A., & Sturchio, N. C. (1993). In-situ synchrotron X-ray reflectivity measurements at the calcite-water interface, Geochimica et Cosmochimica Acta, 57(16), 4103-4110, doi.org/10.1016/0016-7037(93)90356-2. ##
  68. Chiarello, R. P., & Sturchio, N. C. (1995). The calcite (10l̄4) cleavage surface in water: Early results of a crystal truncation rod study, Geochimica et Cosmochimica Acta, 59(21), 4557-4561.doi.org/10.1016/0016-7037(95)00363-5. ##
  69. Fenter, P., Geissbühler, P., DiMasi, E., Srajer, G., Sorensen, L. B., & Sturchio, N. C. (2000). Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochimica et Cosmochimica Acta, 64(7), 1221-1228, doi.org/10.1016/S0016-7037(99)00403-2. ##
  70. Liang, Y., & Baer, D. R. (1997). Anisotropic dissolution at the CaCO3 (101̄4)—water interface, Surface Science, 373(2-3), 275-287, doi.org/10.1016/S0039-6028(96)01155-7.
  71. Hillner, P. E., Gratz, A. J., Manne, S., & Hansma, P. K. (1992). Atomic-scale imaging of calcite growth and dissolution in real time. Geology, 20(4), 359-362, doi.org/10.1130/0091-7613(1992)020<0359: ASIOCG>2.3.CO;2. ##
  72. Reischl, B., Raiteri, P., Gale, J. D., & Rohl, A. L. (2019). Atomistic simulation of atomic force microscopy imaging of hydration layers on calcite, dolomite, and magnesite surfaces, The Journal of Physical Chemistry C, 123(24), 14985-14992, doi.org/10.1021/acs.jpcc.9b00939. ##
  73. de Leeuw, N., & Parker, S. (1997). Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces, Journal of the Chemical Society, Faraday Transactions, 93(3), 467-475, doi.org/10.1039/A606573B. ##
  74. Goltapeh, S. A., Abdolahi, S., Miri, R., & Hellevang, H. (2021). Extension of PC-SAFT equation of state to include mineral surface effect in fluid properties using molecular dynamic simulation, Sustainable Energy Technologies and Assessments, 48, 101624, doi.org/10.1016/j.seta.2021.101624. ##
  75. Hansen J. P., I. R. B. T.T. of S.L. (Fourth E. McDonald, eds., Theory of Simple Liquids, in: Academic Press, Oxford, 2013: doi.org/10.1016/B978-0-12-387032-2.00013-1. ##
  76. Cooke, D. J., Gray, R. J., Sand, K. K., Stipp, S. L. S., & Elliott, J. A. (2010). Interaction of ethanol and water with the {1014} surface of calcite, Langmuir, 26(18), 14520-14529, doi.org/10.1021/la100670k. ##
  77. Kwak, H. T., Yousef, A. A., & Al-Saleh, S. (2014l). New insights on the role of multivalent ions in water-carbonate rock interactions, In SPE Improved Oil Recovery Conference? 169112, doi.org/10.2118/169112-MS. ##
  78. Jackson, M. D., Al-Mahrouqi, D., & Vinogradov, J. (2016). Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding, Scientific Reports, 6(1), 37363, doi.org/10.1038/srep37363. ##