Study and Modeling the Effect of Brine Salinity and Composition and Oil Type on the Foam Stability

Document Type : Research Paper


Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran


Through stability experiments, this study investigates the stability of foams prepared using Cetyltrimethylammonium Bromide (CTAB). The aim is to examine the influence of salt type, salinity, and brine composition on foam stability. The findings reveal that salts diminish stability at intermediate and high salinities, while the brine composition also significantly affects stability. By manipulating the composition, it is possible to achieve optimal foam stability. Specifically, seawater compositions with doubled concentrations of CaCl2, Na2SO4, KCl, NaCl, and identical concentrations of MgCl2 are identified as the optimum concentrations of smart water for attaining the best foam stability, with respective half-lives of 270, 298, 262, 280, and 248 seconds. Additionally, the longevity of CTAB foams is adversely affected by oils, although the impact varies depending on the type of hydrocarbon. Generally, more polar hydrocarbons exhibit a reduced negative effect on foam stability.


  1. Lake, L. W. (1989). Enhanced oil recovery, Prentice Hall, 550. ##
  2. Joekar-Niasar, V., & Hassanizadeh, S. M. (2011). Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling, International Journal of Multiphase Flow, 37(2). 198-214, ##
  3. Chang, Y. B., Lim, M. T., Pope, G. A., & Sepehrnoori, K. (1994). CO2 flow patterns under multiphase flow: heterogeneous field-scale conditions, SPE Reservoir Engineering, 9(03). 208-216, ##
  4. Badizad, M. H., Zanganeh, A. R., & Saeedi Dehaghani, A. H. (2016). Simulation and assessment of surfactant injection in fractured reservoirs: a sensitivity analysis of some uncertain parameters, Iranian Journal of Oil and Gas Science and Technology, 5(1). 13-26, ##
  5. Rahimi, R., & Saeedi Dehaghani, A. H. (2021). An experimental study comparing the stability of colloidal dispersion gels with normal polymeric solutions for enhanced‐oil‐recovery purposes, The Canadian Journal of Chemical Engineering. 99(5). 1116-1124, ##
  6. Homsy, G. M. (1987). Viscous fingering in porous media, Annual review of fluid mechanics, 19(1). 271-311, ##
  7. Razavi, S. M. H., Shahmardan, M. M., Nazari, M., & Norouzi, M. (2020). Experimental study of the effects of surfactant material and hydrocarbon agent on foam stability with the approach of enhanced oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124047, ##
  8. Ahmadi, S., Saeedi Dehaghani, A. H., & Shadman, M. M. (2017). -Experimental investigation of the impact of smart water and surfactant solution on enhanced oil recovery in carbonate reservoirs, Applied Chemistry, 12(43). 9-22, doi: 10.22075/CHEM.2017.2358. ##
  9. Roozbahani, A. R., Saeedi Dehaghani, A. H., & Ayatollahi, S. (2019). Experimental investigation of the effect of salinity and type of ion on the stability of water in oil emulsion, Journal of Petroleum Research, 29(108). 4-16, 10.22078/PR.2019.3221.2487. ##
  10. Ma, K., Liontas, R., Conn, C. A., Hirasaki, G. J., & Biswal, S. L. (2012). Visualization of improved sweep with foam in heterogeneous porous media using microfluidics, Soft Matter. 8(41). 10669-10675, ##
  11. Exerowa, D., & Kruglyakov, P. M. (1997). Foam and foam films: theory, experiment, application, Elsevier. ##
  12. Binks, B. P., & Horozov, T. S. (2005). Aqueous foams stabilized solely by silica nanoparticles, Angewandte Chemie International Edition, 44(24). 3722-3725, ##
  13. Mofrad, S. K., & Dehaghani, A. H. S. (2020). An experimental investigation into enhancing oil recovery using smart water combined with anionic and cationic surfactants in carbonate reservoir, Energy Reports. 6. 543-549, ##
  14. Ahmadi, A., Saeedi Dehaghani, A. H., & Saviz, S. (2022). Experimental study of SDS foam stability in the presence of silica nanoparticle, Journal of Chemical and Petroleum Engineering, 56(2), 203- 213, doi: 10.22059/JCHPE.2022.339327.1382. ##
  15. Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., & Zitha, P. L. (2013). Novel insight into foam mobility control, IPTC 15338, in International Petroleum Technology Conference, Bangkok, Thailand, SPE Journal, 18 (03), 416–427, ##
  16. Hirasaki, G. J., & Lawson, J. B. (1985). Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries, Society of Petroleum Engineers Journal, 25(02). 176-190, ##
  17. Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G. J., & Rossen, W. R. (2012). Foam–oil interaction in porous media: Implications for foam assisted enhanced oil recovery, Advances in colloid and interface science. 183. 1-13, ##
  18. Bergeron, V., Fagan, M. E., & Radke, C. J. (1993). Generalized entering coefficients: a criterion for foam stability against oil in porous media, Langmuir. 9(7). 1704-1713, ##
  19. Bergeron, V., Fagan, M. E., & Radke, C. J. (1993). Foam films stabilized with alpha olefin sulfonate (AOS), Colloids and Surfaces A: Physicochemical and Engineering Aspects. 324(1-3). 35-40, ##
  20. Kornev, K. G., Neimark, A. V., & Rozhkov, A. N. (1999). Foam in porous media: thermodynamic and hydrodynamic peculiarities, Advances in Colloid and Interface Science, 82(1-3). 127-187, ##
  21. Tajikmansori, A., Hosseini, M., & Dehaghani, A. H. S. (2021). Mechanistic study to investigate the injection of surfactant assisted smart water in carbonate rocks for enhanced oil recovery: An experimental approach, Journal of Molecular Liquids, 325. 114648, ##
  22. Li, C., Zhang, T., Ji, X., Wang, Z., Sun, S., & Hu, S. (2016). Effect of Ca2+/Mg2+ on the stability of the foam system stabilized by an anionic surfactant: A molecular dynamics study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 423-432, ##
  23. Varade, S. R., & Ghosh, P. (2017). Foaming in aqueous solutions of zwitterionic surfactant: Effects of oil and salts, Journal of Dispersion Science and Technology. 38(12). 1770-1784, ##
  24. Wang, J., Cao, Y., Li, G., Deng, L., & Li, S. (2018). Effect of CTAB concentration on foam properties and discussion based on liquid content and bubble size in the foam, International Journal of Oil, Gas and Coal Engineering. 6(1). 18-24, doi: 10.11648/j.ogce.20180601.13. ##
  25. Kumar, S., & Mandal, A. (2017). Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery, Applied Surface Science, 420. 9-20, ##
  26. Liu, H., Han, P., Sun, G., Pan, F., Li, B., Wang, J., & Lv, C. (2017). Surface dilational rheology, foam, and core flow properties of alpha olefin sulfonate, Journal of Surfactants and Detergents. 20(1). 35-45. ##
  27. Jiang, N., Yu, X., Sheng, Y., Zong, R., Li, C., & Lu, S. (2020). Role of salts in performance of foam stabilized with sodium dodecyl sulfate, Chemical Engineering Science. 216. 115474, ##
  28. Preisig, Natalie, Tamara Schad, Leandro Jacomine, Romain Bordes, and Cosima Stubenrauch (2019) How promoting and breaking intersurfactant H-bonds impact foam stability, Langmuir, 35(47). 14999-15008. ##
  29. Preisig, N., Schad, T., Jacomine, L., Bordes, R., & Stubenrauch, C. (2019). A comparison of foam stability at varying salinities and surfactant concentrations using bulk foam tests and sandpack flooding, Journal of Petroleum Exploration and Production Technology, 10(2). 271-282, ##
  30. Sun, J., Jing, J., Brauner, N., Han, L., & Ullmann, A. (2018). An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation, Journal of Industrial and Engineering Chemistry, 68. 99-108, ##
  31. Dehdari, B., Parsaei, R., Riazi, M., Rezaei, N., & Zendehboudi, S. (2020). New insight into foam stability enhancement mechanism, using polyvinyl alcohol (PVA) and nanoparticles, Journal of Molecular Liquids. 307. 112755, ##
  32. Ms, D. P., & Mr, H. R. (2019). A pore-scale study on improving CTAB foam stability in heavy crude oil− water system using TiO2 nanoparticles, Journal of Petroleum Science and Engineering, 183. 106411, ##
  33. Bello, A., Ivanova, A., & Cheremisin, A. (2022). Enhancing N2 and CO2 foam stability by surfactants and nanoparticles at high temperature and various salinities, Journal of Petroleum Science and Engineering, 215. 110720, ##
  34. Ahmadi, A., & Saeedi Dehaghani, A. H. (2021). Sensitivity analysis and prediction of wettability alteration using response surface methodology and PHREEQC, Journal of Petroleum Science and Technology, 11(4). 34, DOI: 10.22078/JPST.2022.4792.1800. ##
  35. Bera, A., Ojha, K., & Mandal, A. (2013). Synergistic effect of mixed surfactant systems on foam behavior and surface tension, Journal of Surfactants and Detergents. 16(4). 621-630. ##
  36. Samal, K., Das, C., & Mohanty, K. (2017). Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system, Dyes and Pigments, 140, 100-108, ##
  37. Verma, A., Chauhan, G., & Ojha, K. (2018). Characterization of α-olefin sulfonate foam in presence of cosurfactants: Stability, foamability and drainage kinetic study, Journal of Molecular Liquids, 264. 458-469, ##
  38. Israelachvili, Jacob N, Intermolecular and surface forces. 2011: Academic Press. ##