Pt-Impregnated ZnO/HZSM-5 Catalyst for Aromatics Synthesis by CO2 Hydrogenation

Document Type : Research Paper

Authors

Department of Petrochemical, Iran Polymer and Petrochemical Institute (RIPI), Tehran, Iran

Abstract

A highly efficient bifunctional catalysts containing platinum-impregnated ZnO-loaded HZSM5 and its performance on direct hydrogenation of CO2 to aromatics was investigated. Methanol-mediated pathway was applied for hydrogenation reactions. ZnO was introduced to the zeolite structure through hydrothermal synthesis and illustrated gradual enhancement in surface area and pore volume of the zeolite. Pt was added to the zeolite by post treatment partial vacuum impregnation technique. The amount of zeolite acidity indicated a key role in CO2 conversion and aromatics selectivity. NH3-TPD analysis suggested that introduction of both ZnO and Pt increased the strong acid sites and conversly decreased the weak acid sites. Furthermore, some new acidic sites were appeared in zeolite structure after ZnO loading. Furthermore, XPS results proposed that most of the zinc species located on the surface of the zeolite as oxide form, whereas, the platinum is located in the catalysts in both metallic and oxide form. Increasing the amount of zinc load to 10 wt%, led to creation of some ZnO clusters that decreased the catalyst stability. However, 0.1 wt% Pt-8 wt% Zn/HZSM5 catalyst denoted as (P(8)Z/HZ5) showed the best results for CO2 conversion (88.3%) and aromatics selectivity (69.2%) with low CO selectivity (9.8%) compared to other zeolites.

Keywords


  1. Youming, N., Zhiyang, C., Yi, F., Yong, L., Wenliang, Z. & Zhongmin, L. (2018). Selective conversion of CO2 and H2 into aromatics, Nature Communication, 9: 3457. ##
  2. Dorner, R.W., Hardy, D.R., Williams, F.W. & Willauer, H.D. (2010). Heterogeneous catalytic CO2 conversion to value-added hydrocarbons, doi.org/10.1039/C001514H, 3, 884-890. ##
  3. Aresta, M., Dibenedetto. A. & Angelini, A. (2014). Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2, Chemical Reviews, 114, 1709-1742, doi.org/10.1021/cr4002758. ##
  4. Porosoff, M.D., Yan. B. & Chen. J.G. (2016). Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities, Energy & Environmental Science, 9, 62-73, doi: 10.1039/C5EE02657A. ##
  5. Wang, W., Wang, S., Ma, X. & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide, Chemical Society Reviews, 40, 3703-3727, doi.org/10.1039/C1CS15008A. ##
  6. Liu, L., Puga, A.V., Cored, J., Concepción, P., Pérez-Dieste, V., García, H. & Corma, A. (2018). Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites, Applied Catalysis B: Environmental, 235, 186-196, doi.org/10.1016/j.apcatb.2018.04.060. ##
  7. He, Z., Cui, M., Qian, Q., Zhang, J., Liu, H. & Han, B. (2019). Synthesis of liquid fuel via direct hydrogenation of CO2, PNAS, 116(26), 12654-12659, doi.org/10.1073/pnas.1821231116. ##
  8. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W. & Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nature Chemistry, 9, 1019-1024. ##
  9. Freeman, D., Wells, R.P.K. & Hutchings, G.J. (2002). conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts, Journal of Catalysis, 205(2), 358-365, doi.org/10.1006/jcat.2001.3446. ##
  10. Yakovlev, A.L., Shubin, A.A., Zhidomirov, G.M. & Van Santen, R.A. (2000). DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites, Catalysis Letters, 70, 175-181. ##
  11. Rasouli, M., Yaghobi, N. (2022). Bifunctional ZnO/HZSM‑5 Catalysts in Direct Hydrogenation of CO2 to Aromatics; Influence of Preparation Method, Catalysis Letters, https://doi.org/10.1007/s10562-022-04073-5. ##
  12. Zhang, J., Qian, W., Kong, C. & Wei, F. (2015). Increasing para-xylene selectivity in making aromatics from methanol with a surface modified Zn/P/ZSM-5 catalyst, ACS Catalysis, 5(5), 298-2988, doi.org/10.1021/acscatal.5b00192. ##
  13. Wang, F., Xiao, W., Gao, L. & Xiao, G. (2016). The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol, Catalysis Science & Technology, 6(9), 3047-3086. ##
  14. Cui, X., Gao, P., Li, S., Yang, C., Liu, Z., Wang, H., Zhong, L. & Sun, Y. (2019). Selective production of aromatics directly from carbon dioxide hydrogenation, ACS Catalysis, 9(5), 3866-3876, doi.org/10.1021/acscatal.9b00640. ##
  15. Xu, Y., Shi, C., Liu, B., Wang, T., Zheng, J., Li, W., Liu, D. & Liu, X. (2019). Selective production of aromatics from CO2, Catalysis Science & Technology, 9(3), 593-610, doi.org/10.1039/C8CY02024H. ##
  16. Dai, C., Zhao, X., Hu, B., Zhang, J., Hao, Q., Chen, H., Guo, X. & Ma, X. (2020). Hydrogenation of CO2 to aromatics over Fe-K/alkaline Al2O3 and P/ZSM-5 tandem catalysts, Industrial & Engineering Chemistry Research, 59(43). 19194-19202, doi.org/10.1021/acs.iecr.0c03598. ##
  17. Wang, T., Yang, C., Gao, P., Zhou, S., Li, S., Wang, H. & Sun, Y. (2021). ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation, Applied Catalysis B: Environmental, 286, 119929, doi.org/10.1016/j.apcatb.2021.119929. ##
  18. Wei, J., Yao, R., Ge, Q., Xuc, D., Fanga, C., Zhanga, J., Xua, H. & Sun, J. (2021). Precisely regulating bronsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation, Applied Catalysis B: Environmental, 283, 119648, doi.org/10.1016/j.apcatb.2020.119648. ##
  19. Ghosh, S., Olsson, L. & Creaser, D. (2022). Methanol mediated direct CO2 hydrogenation to hydrocarbons: experimental and kinetic modeling study, Chemical Engineering Journal, 435, 135090, doi.org/10.1016/j.cej.2022.135090. ##
  20. Abdullah, T.A. & Zaidi, H.A. (2016). Effect of ZnO and NiO Modified HZSM-5 catalyst for ethanol conversion to hydrocarbons, International Journal of Chemical Engineering and Applications, 7(3). 151, doi: 10.7763/IJCEA. 2016.V7.561. ##
  21. Tariq, A., Esquius, J.R., Davies, T.E., Bowker, M., Taylor, S.H. & Hutchings, G.J. (2021). Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2. Topics in Catalysis, 64, 965-973. ##
  22. Zhou, C., Shi, J., Zhou, W., Cheng, K., Zhang, Q., Kang, J. & Wang, Y. (2020). Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide, ACs Catalysis, 10(1), 302-310, doi.org/10.1021/acscatal.9b04309. ##
  23. Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S. & Li, C. (2019). Highly selective conversion of carbon dioxide to aromatics over tandem catalysts, Joule, 3(2), 570-583, doi.org/10.1016/j.joule.2018.10.027. ##
  24. Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., Zhang, G., Song, C. & Guo, X. (2019), Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst, Journal of CO2 Utilization, 29, 140-145, doi.org/10.1016/j.jcou.2018.12.002. ##
  25. Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W. & Liu, Z. (2018). Selective conversion of CO2 and H2 into aromatics, Nature communications, 9(1), 3457, 9, 3457. ##
  26. Zhang, J., Zhang, M., Chen, S., Wang, X., Zhou, Z., Wu, Y., Zhang, T., Yang, G., Han, Y. & Tan, Y. (2019). Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst, Chemical Communications, 55(7), 973-976, doi.org/10.1039/C8CC09019J. ##
  27. Ni, Y., Peng, W., Sun, A., Mo, W., Hu, J., Li, T. & Li, G. (2010). High selective and stable performance of catalytic aromatization of alcohols and ethers over La/Zn/HZSM-5 catalysts, Journal of Industrial and Engineering Chemistry, 16(4), 503-505, doi.org/10.1016/j.jiec.2010.03.011. ##
  28. Rasouli, M., Atashi, H., Mohebbi-kalhori, D. & Yaghobi, N. (2017). Bifunctional Pt/Fe-ZSM-5 catalyst for xylene isomerization, Journal of the Taiwan Institute of Chemical Engineers, 78, 438-446, 78, 438-446, doi.org/10.1016/j.jtice.2017.05.018. ##
  29. Thommes, M., Kaneko, K., Neimark, A., Olivier, J.P., Rodriguez-Reinoso, F. & Rouquerol, J. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure and Applied Chemistry, 87(9-10), 1051-1069, doi.org/10.1515/pac-2014-1117. ##
  30. Zeid, A. & ALOthman, A. (2012). Review: fundamental aspects of silicate mesoporous materials, Materials, 5(12), 2874-2902, doi.org/10.3390/ma5122874. ##
  31. Zhao, Y., Tan, W., Wu, H., Zhang, A., Liu, M., Li, G. (2011). Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene, Catalysis Today, 160(1): 179-183, doi.org/10.1016/j.cattod.2010.05.036. ##
  32. Kim, M.S., Lee, D.W., Hong, S.H., Hong, Y.K., Lee, S.H. & Oh, S.H. (2012). Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst: Influence of catalyst support on the low temperature activity, Journal of Hazardous Materials, 237, 153-160, doi.org/10.1016/j.jhazmat.2012.08.026. ##
  33. Yang, C., Qiu, M., Hu, S., Chen, X., Zeng, G., Liu, Z. & Sun, Y. (2016). Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites, Microporous and Mesoporous Materials, 231, 110-116, doi.org/10.1016/j.micromeso.2016.05.021. ##
  34. Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T., Li, G. (2011). The preparation of nano-sized H [Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous and Mesoporous Materials, 143(2-3), 435-442, doi.org/10.1016/j.micromeso.2011.03.029. ##
  35. Soltanali, S., Halladj, R., Rashidi, A. & Bazmi, M. (2014). Application of D-optimal experimental design in nano-sized ZSM-5 synthesis for obtaining higher crystallinity, Crystal Research and Technology, 49(6), 366-375, doi.org/10.1002/crat.201300434. ##
  36. Cheng, X.L., Zhao, H., Huo, L.H., Gao, S. & Zhao, J.G. (2004). ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Sensors and Actuators B: chemical, 102(2), 248-252, doi.org/10.1016/j.snb.2004.04.080. ##
  37. Abdelsayed, V., Smith, M.W. & Shekhawat, D. (2015). Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization, Applied Catalysis A: General, 505, 365-374, doi.org/10.1016/j.apcata.2015.08.017. ##
  38. Kawase, R., Iida, A., Kubota, Y., Komura, K., Sugi, Y., & Oyama, K. (2007). Hydrothermal synthesis of calcium and boron containing MFI-Type zeolites by using organic amine as structure directing agent, Industrial & Engineering Chemistry Research, 46(4), 1091-1098, doi.org/10.1021/ie060624z. ##
  39. Niu, X.J., Gao, J., Miao, Q., Dong, M., Wang, G.F., Fan, W.B., Qin, Z.F. & Wang, J.G. (2014). Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous and Mesoporous Materials, 197, 252-261. ##
  40. Padro, C.L., Rey, E.A., Gonzalez Pena, L.F. & Apesteguia, C.R. (2011). Activity, selectivity and stability of Zn-exchanged NaY and ZSM5 zeolites for the synthesis of o-hydroxyacetophenone by phenol acylation, Microporous and Mesoporous Materials, 143(1), 236-242, doi.org/10.1016/j.micromeso.2011.03.005. ##
  41. Ma, D., Lu, Y., Su, L., Xu, Z., Tian, Z., Xu, Y., Lin, L. & Bao, X. (2002). Remarkable improvement on the methane aromatization reaction: a highly selective and coking-resistant catalyst, The Journal of Physical Chemistry B, 106(34), 8524-8530, doi.org/10.1021/jp020166h. ##
  42. Zhao, Y., Bamwenda, G.R., Groten, W.A., & Wojciechowski, B.W.J. (1993). The chain mechanism in catalytic cracking: the kinetics of 2-methylpentane cracking, Journal of Catalysis, 140(1), 243-261, doi.org/10.1006/jcat.1993.1081. ##
  43. Chen, X., Dong, M., Niu, X., Wang, K., Chen, G., Fan, W., Wang, J. & Qin, Z. (2015). Influence of Zn species in HZSM-5 on ethylene aromatization, Chinese Journal of Catalysis, 36(6), 880-888, doi.org/10.1016/S1872-2067(14)60289-8. ##
  44. Kolyagin, Y.G., Ordomsky, V.V., Khimyak, Y.Z., Rebrov, A.I., Fajula, F. & Ivanova, I.I. (2006). Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques, Journal of Catalysis, 238(1): 122-133, doi.org/10.1016/j.jcat.2005.11.037. ##
  45. Simon-Masseron, A., Marques, J.P., Lopes, J.M., Ramôa Ribeiro, F., Gener, I., Guisnet, M. (2007). Influence of the Si/Al ratio and crystal size on the acidity and activity of HBEA zeolites, Applied Catalysis, 316, 75-82, doi.org/10.1016/j.apcata.2006.09.022. ##
  46. Lerici, L.C., Renzini, M.S., Sedran, U. & Pierella, L. B. (2013), Tertiary recycling of low-density polyethylene by catalytic cracking over ZSM-11 and BETA zeolites modified with Zn2+: stability study, Energy & Fuels, 27(4), 2202-2208, doi.org/10.1021/ef302099e. ##
  47. Katada, N., Igi, H. & Kim, J.H. (1997). Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium, he Journal of Physical Chemistry B, 101(31), 5969-5977, doi.org/10.1021/jp9639152. ##
  48. Rodríguez-González, L., Hermes, F., Bertmer, M., Rodríguez-Castellón, E., Jiménez-López, A., Simon, U. (2007). The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy, Applied Catalysis A: General, 328(2), 174-182, doi.org/10.1016/j.apcata.2007.06.003. ##
  49. Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., Lillerud, K.P., Bjorgen, M. & Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behavior, Chemical Communications, (20), 2300-2301, doi.org/10.1039/B407246D. ##
  50. Tay, Y.Y., Li, S., Sun, C.Q. & Chen, P. (2006). Size dependence of Zn 2p3∕2 binding energy in nanocrystalline ZnO, Applied Physics Letters, 88(7), 1-3, doi.org/10.1063/1.2174093. ##
  51. Sun, L.Y., Wang, Y.Q., Chen, H.B., Sun, C., Meng, F.J., Gao, F. & Wang, X. (2018). Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction, Catalysis Today, 316, 91-98, doi.org/10.1016/j.cattod.2018.01.015. ##
  52. Zhang, J.F., Zhang, M., Chen, S.Y., Wang, X.X., Zhou, Z.L., Wu, Y.Q., Zhang, T., Yang, G.H., Han, Y.Z. & Tan, Y.S. (2019). Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst, Chemical Communications 55(7), 973-976, doi.org/10.1039/C8CC09019J. ##
  53. Zhou, W., Cheng, K., Kang, J.C., Zhou, C., Subramanian, V., Zhang, Q.H. & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chemical Society Reviews, 48(12): 3193-3228, doi.org/10.1039/C8CS00502H. ##
  54. Martin, O., Martin, A.J., Mondelli, C., Mitchell, S., Segawa, T.F., Hauert, R., Drouilly, C., Curulla-Ferre, D. & Perez-Ramirez, J. (2016). Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation, Angew, Angewandte Chemie, 55, 6261-6265, doi.org/10.1002/ange.201603172. ##
  55. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W., Sun, Y. (2017), Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nature Chemistry, 9, 1019-1024. ##
  56. Speybroeck, V.V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R.G., Richard, C. & Catlow, A. (2015). Advances in theory and their application within the field of zeolite chemistry, Chemical Society Reviews, 44 (20), 7044-7111, doi.org/10.1039/C5CS00029G.
  57. Nezam, I., Zhou, W., Gusmao, G.S., Realff, M.J., Wang, Y., Medford, A.J. & Jones, C.W. (2021). Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis, Journal of CO2 Utilization, 45, 101405 doi.org/10.1016/j.jcou.2020.101405. ##
  58. Olsbye, U., Svelle, S., Bjorgen, M., Beato, P., Janssens, T.V.W., Joensen, F., Bordiga, S. & Lillerud, K.P. (2012). Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity, Angewandte Chemie International Edition, 51(24), 5810-5831, doi.org/10.1002/anie.201103657. ##
  59. Larmier, K., Liao, W.C., Tada, S., Lam, E., Verel, R., Bansode, A., Urakawa, A., Comas-Vives, A. & Copéret, C. (2017). Reaction intermediates and role of the interface in the CO2 -to-CH3OH hydrogenation on ZrO2-Supported Cu nanoparticles, Angew, Angewandte Chemie, 56, 2318–2323, doi: 10.1002/anie.201610166. ##
  60. Inui, T., Matsuda, H., Yamase, Q., Nagata, H., Fukuda, K. & Ukawa, T. (1986). Highly selective synthesis of light olefins from methanol on a novel Fe-silicate, Journal of Catalysis, 98(2), 491-501, doi.org/10.1016/0021-9517(86)90337-4. ##
  61. Kawase, R., Iida, A., Kubota, Y., Komura, K., Sugi, Y., & Oyama, K. (2007). Hydrothermal synthesis of calcium and boron containing MFI-Type zeolites by using organic amine as structure directing agent, Industrial & Engineering Chemistry Research, 46(4), 1091-1098, doi.org/10.1021/ie060624z. ##
  62. Ono, Y., Adachi, H. & Senoda, Y. (1988). Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1(84), 1091-1099, doi.org/10.1039/F19888401091. ##
  63. Pidko, E.A. & Van Santen, R.A. (2007). Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite:  a comprehensive DFT study, The Journal of Physical Chemistry C, 111, 2643-2655, doi.org/10.1021/jp065911v. ##
  64. Donk, S.V., Janssen, A.H., Bitter, J.H. & Jong, K.P.D. (2003). Generation, characterization, and impact of mesopores in zeolite catalysts, Catalysis Reviews, 45(2), 297-319, doi.org/10.1081/CR-120023908. ##
  65. Wang, Y., Gao, W., Kazumi, S., Li, H., Yang, G. & Tsubaki, N. (2019). Direct and oriented conversion of CO2 into value-added aromatics, Chemistry–A European Journal, 25(20): 5149-5153, doi.org/10.1002/chem.201806165. ##
  66. Zhang, J., Zhang, M. & Chen, S. (2019). Hydrogenation of CO2 into aromatics over a ZnCrOX-zeolite composite catalyst, Chemical Communications, 55(7), 973-976, doi.org/10.1039/C8CC09019J. ##