Experimental Study on COD and BOD Treatment of Petrochemical Wastewater Using Photocatalytic Degradation

Document Type : Research Paper


1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Energy Technology Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran



TiO2 photocatalyst was used to degrade Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) from petrochemical wastewater. The photocatalytic performance of the TiO2 was studied with variations of treatment parameters such as temperature, pH, contact time, and catalyst dosage. Design of Experiment (DOE) utilizing the Taguchi method was used to find and optimize the process model. Results for photocatalytic degradation of COD and BOD indicated the proper performance of TiO2 as the photocatalyst. The best result was achieved at pH 5 after 90 min with 73% COD conversion. COD degradation of petrochemical waste was optimized according to the experimental results, while process optimization indicated best process conditions are pH ≈ 5.2, temperature ≈ 42.8 °C, catalyst dosage = 0.75, and contact time of 88 min.


  1. Liu, S. (2014). Advanced treatment of refractory organic pollutants in petrochemical industrial wastewater by bioactive enhanced ponds and wetland system, Ecotoxicology, 23 (4): 689-698, doi.org/10.1007/s10646-014-1215-9. ##
  2. Deghles, A. & U. Kurt (2016). Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process, Chemical Engineering and Processing: Process Intensification, 104, 43-50, doi.org/10.1016/j.cep.2016.02.009. ##
  3. Shariati, S.R.P., Bonakdarpour B., Zare N., & Zokaee Ashtiani F. (2011). The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresource Technology, 102(17), 7692-7699, doi.org/10.1016/j.biortech.2011.05.065. ##
  4. Ayoub, G. M., Hamzeh A., & Semerjian L. (2011) Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption, Desalination, 273(2), 359-365, doi.org/10.1016/j.desal.2011.01.045. ##
  5. Sathya K., Nagarajan K., Carlin Geor Malar G., Rajalakshmi S. & Raja Lakshmi P. (2022) A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources, Applied Water Science, 12(70): 1-27, doi.org/10.1007/s13201-022-01594-7. ##
  6. Barakat, M .A. (2011) New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry, 4(4): 361-377, doi.org/10.1016/j.arabjc.2010.07.019. ##
  7. Hrerujirapapong, T., Khanitchaidecha, W., Nakaruk, A. (2017) A Treatment of high organic carbonindustrial wasteater using photocatalysis process, Environ Nanotechnol Monit Manag, 8, 163–168, doi.org/10.1016/j.enmm.2017.07.006##.
  8. Gatsios, E., Hahladakis, J. N., Gidarakos, E. (2015). Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals, Journal of Environmental Management, 154,117–127, doi.org/10.1016/j.jenvman.2015.02.018. ##
  9. Bora, T. Dutta, J. (2014) Applications of nanotechnology in wastewater treatment—a review, JNanosci Nanotechnol, 14(1): 613–626, doi.org/10.1166/jnn.2014.8898. ##
  10. Al-Nuaim M. A., Alwasiti A. A., Shnain Z. Y. (2023) The photocatalytic process in the treatment of polluted water, 77, 677-701, doi.org/10.1007/s11696-022-02468-7. ##
  11. Sonali, A., Wankhede, Dr. & Arati Barik (2020). Preparation of TiO2 Nanoparticles and Its use in Waste Water Treatment, 9(4): 96-99, doi:10.17577/IJERTCONV9IS04022. ##
  12. Ungureanu, N., Biriş, S.Şt, Vlăduţ, V., Zăbavă, B. & Popa, M. (2019) TiO2 photocatalyst in wastewater treatment – review, International Symposium Isb-inmateh – Agricultural and Mechanical Engineering At: Bucharest, Romania. ##
  13. Utami, F. D., Rahman D. Y., Sutisna, Kamirul, D. O. (2019) Margareta and M Abdullah, Photo-catalyst based on TiO2 and its application in organic wastewater treatment using simple spray method, Journal of Physics: Conference Series,1204: 012086, doi:10.1088/1742-6596/1204/1/012086. ##
  14. Gogate, P. R., Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research, 8(3): 553-597, doi.org/10.1016/S1093-0191(03)00031-5. ##
  15. De Morais, J. L. & Zamora P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, Journal of Hazardous Materials, 123(1): 181-186, doi.org/10.1016/j.jhazmat.2005.03.041. ##
  16. Huang, H. H., Lu M. C. & Chen J. N. (2001). Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides, Water Research, 35(9): 2291-2299, doi.org/10.1016/S0043-1354(00)00496-6. ##
  17. Kwan W. P. & Voelker B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed fenton-like systems, Environmental Science & Technology, 37(6): 1150-1158, doi.org/10.1021/es020874g. ##
  18. Kim H. E., Lee J., Lee H., Lee Ch. (2012). Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH, Applied Catalysis B: Environmental, 115-116, 219-224, doi.org/10.1016/j.apcatb.2011.12.027. ##
  19. Li J. Rong, Yang C.-H., Wu L. G., Cao Y. Q., Bo-qiong Jiang T. W. (2015). Enhancement on the performance of TiO2 photocatalysts under weak UV light irradiation via asorbed-layer nanoreactor technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 413-422, doi.org/10.1016/j.colsurfa.2015.05.038. ##
  20. Cortés J. A. , Alarcón-Herrera M. T., Villicaña-Méndez M. González-Hernández J., & Pérez-Robles J. F. (2011) Impact of the kind of ultraviolet light on the photocatalytic degradation kinetics of the TiO2/UV process, Environmental Progress & Sustainable Energy, 30(3): 318-325, /doi.org/10.1002/ep.10480. ##
  21. Mathur , A. Raghavan, Chaudhury P., J. B. Johnson, Roy  R., Kumari  J., Chaudhuri  G., Chandrasekaran  N. , Suraishkumar  G. K., & Mukherjee A. (2015)  Cytotoxicity of titania nanoparticles towards waste water isolate Exiguobacterium acetylicum under UVA, visible light and dark conditions. Journal of Environmental Chemical Engineering, 3(3): 1837-1846, doi.org/10.1016/j.jece.2015.06.026. ##
  22. Lodha, S., Jain A., & Punjabi P. B. (2011). A novel route for waste water treatment: Photocatalytic degradation of rhodamine B, Arabian Journal of Chemistry, 4(4): 383-387, doi.org/10.1016/j.arabjc.2010.07.008. ##
  23. Feryal, A. (2005). Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters, Environmental Progress, 24(3): 317-322, doi.org/10.1002/ep.10092. ##
  24. Barick K. C., Sharma P., Mukhija A., Sainis J. K., Gupta A., & HassanP. A. (2015). Effect of cetylpyridinium chloride on surface passivation and photocatalytic activity of ZnO nanostructures. Journal of Environmental Chemical Engineering, 3(2): 1346-1355, doi.org/10.1016/j.jece.2014.12.007. ##
  25. Zhou, K., Xie X. D. & Chang C. T. (2017). Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products, Applied Surface Science, 416, 248-258. ##
  26. Zhang X., Hong Pan J., Jianhong Du A., Xu Sh., & Delai Sun D. (2009). Room-temperature fabrication of anatase TiO2 submicrospheres with nanothornlike shell for photocatalytic degradation of methylene blue, Journal of Photochemistry and Photobiology A: Chemistry, 204(2): 154-160, doi.org/10.1016/j.jphotochem.2009.03.011. ##
  27. Linnik O., Manuilov E, Snegir S, Smirnova N. & EremenkoA. (2009). Photocatalytic degradation of tetracycline hydrochloride in aqueous solution at ambient conditions stimulated by gold containing zinc- titanium oxide films, in Journal of Advanced Oxidation Technologies, 265, doi.org/10.1515/jaots-2009-0218. ##
  28. Polisetti, S., Deshpande, P. A. & Madras G. (2011). Photocatalytic activity of combustion synthesized ZrO2 and ZrO2–TiO2 Mixed Oxides, Industrial and Engineering Chemistry Research,. 50(23): 12915-12924, doi.org/10.1021/ie200350f. ##
  29. Rahmani E., Ahmadpour A. & Zebarjad M. (2011) Enhancing the photocatalytic activity of TiO2 nanocrystalline thin film by doping with SiO2. Chemical Engineering Journal, 174(2): 709-713, doi.org/10.1016/j.cej.2011.09.073. ##
  30. Samiee L., Beitollahi A. & Vinu A. (2012). Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder, Research on Chemical Intermediates, 38, 1467–1482, doi.org/10.1007/s11164-011-0477-6. ##
  31. Bhatia, S. & Verma N. (2017). Photocatalytic activity of ZnO nanoparticles with optimization of defects, Materials Research Bulletin, 95, 468-476, doi.org/10.1016/j.materresbull.2017.08.019. ##
  32. Etacheri V., Di Valentin C., Schneider J., Bahnemann D. & PillaiSuresh C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29, doi.org/10.1016/j.jphotochemrev.2015.08.003. ##
  33. Nakata, K. & Fujishima A. (2012). TiO2 photocatalysis: design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3): 169-189, doi.org/10.1016/j.jphotochemrev.2012.06.001. ##
  34. Schneider, J., Schneider, J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., & Bahnemann D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews,. 114(19): 9919-9986, doi.org/10.1021/cr5001892. ##