Efficiency Evaluation in the Use of Natural Gas in Pre-Salt Petroleum Fields Using Data Envelopment Analysis (DEA) and Their Relation to CO2 Contami-nation Level

Document Type: Research Paper

Authors

LEPROD, Center of Science and Technology, Darcy Ribeiro State University of Northern of Rio de Janeiro, Rio de Janeiro, Brazil

10.22078/jpst.2020.3780.1599

Abstract

 
 
 Verifying the existence of a direct relationship between the inefficient use of natural gas and the high levels of CO2 contamination is indispensable. Therefore, in this study, the Data Envelopment Analysis (DEA) methodology to evaluate the efficiency in the use of natural gas from 11 pre-salt-producing fields was used. Both qualitative and quantitative data on the production of oil and natural gas, made available by the ANP, were analyzed. Afterwards, the Voador field was considered 100% efficient, while the least efficient fields were Búzios, Marlim, Sapinhoá, and Lula, respectively. This result confirmed the research hypothesis since Búzios, Sapinhoá, and Lula were expected to be among the least efficient fields, and they present the highest levels of CO2 contamination. However, Marlim’s great inefficiency highlights the fact that several other parameters greatly influence the best use of natural gas and should also be evaluated. Ultimately, the benchmarks identified in this study can help inefficient Decision Making Units (DMUs), as Marlim, in the search for techniques and production models that allow an improvement in the use of natural gas.

Keywords


  1. Gouveia F, (2010) Tecnologia nacional para extrair petróleo e gás do pré-sal. Conhecimento and Inovação, 6(1): 30-35. ##
  2. Almeida E, Colomer M, Vitto W A C, Nunes L, Botelho F, Costa F, Waeger L, (2017) Gás do pré-sal: oportunidades, desafios e perspectivas (1st ed.), Cooperação e Pesquisa IBP-UFRJ 1-89.##
  3. Ramon N, Ruiz J L, Sirvent I, 2020 Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA. Omega, 92, 1-11. ##
  4. Cook W D, Seiford L M, (2009) “Data envelopment analysis (DEA): thirty years on. European Journal of Operational Research, 192(1): 1-17. ##
  5. Charnes A, Cooper W W, Rhodes E, (1978) Measuring the efficiency of decision-making units, European Journal of Operational Research. 2, 429-444. ##
  6. Gidion D K, Hong J, Hou B, Sillamkwese S S, Adams M Z A, Khoveyni M, (2019) Consistency in efficiency benchmarking: urban water utility regulation with performance improvement,”  Water Supply, 19(7): 1955-1964.##
  7. Cooper W W, Seiford L M, Tone K, (2000) Data Envelopment Analysis: a comprehensive text with models. Applications. References, and DEA- Solver software (1st ed.). Boston: Kluwer Academic Publishers.  1-342.##
  8. Banker R D, Charnes A, Cooper W W, (1984) Some models for the estimation of technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9): 1078-1092. ##
  9. Yamada Y, Matui T, Sugiyama M, (1994) New analysis of efficiency based on DEA. Journal of the Operations Research Society of Japan, 37(2): 158-167. ##
  10. Leta F R, Soares De Mello J C C B, Gomes E G, (2005) Angulo-Meza,  L. Métodos de melhora de ordenação em DEA aplicados à avaliação estática de tornos mecânicos,” Investigação Operacional. 25(2): 229-242. ##
  11. Angulo Meza L, Biondi Neto L, Soares De Mello J C C B, Gomes E G, (2005) ISYDS - Integrated System for Decision Support (SIAD - Sistema Integrado de Apoio à Decisão): a software package for data envelopment analysis model. PesquisaOperacional, 25(3), 493-503. ##
  12. Angulo Meza L, Biondi Neto L, Soares De Mello J C C B, Gomes E G, Coelho P H G, (2005) free software for decision analysis: a software package for data envelopment models. In: 7th International Conference on Enterprise Information Systems – Iceis, 2. 2, 207-212.##
  13. ANP1. (2017) Boletim Mensal de Produção de Petróleo e Gás Natural de Janeiro de 2017. Internet: www.anp.gov.br/wwwanp/images/publicacoes/boletins-anp/Boletim_Mensal- Producao_Petroleo_Gas_Natural/Boletim_de_janeiro-.pdf [feb 26, 2017]. ##
  14. ANP2. Dados de exploração e produção. Internet: www.anp.gov.br/exploracao-e-producao-de-oleo-e-gas/gestao-de-contratos-de-e-p/dados-de-e-p [fev 26, 2017]. ##
  15. Cavalcante G T, Faria R C, (2009) O uso dos parâmetros de benchmarking da análise envoltória de dados (DEA) como instrumento de orçamentação. Revista Interdisciplinar Científica Aplicada, Blumenau, 3(1):  43-61. ##
  16. González-Araya M C, Estellita-Lins M P, (2002) Un algoritmo para encontrar las facetas eficientes de mayordimensión de lafrontera DEA. Anais do XI Congreso Latino Iberoamericano de Investigacion de Operaciones (CLAIO). Concepción, Chile. ##
  17. González-Araya M C, (2003) Projeções Não Radiais em Regiões Fortemente Eficientes da Fronteira DEA — Algoritmos e Aplicações. Tese de Doutorado, Programa de Engenharia de Produção, COPPE/UFRJ, Rio de Janeiro. ##