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ABSTRACT
Fluid catalytic cracking (FCC) process is a vital refinery process which majorly produces gasoline. In this 

research, a hybrid algorithm which was constituted of Adaptive Neuro-Fuzzy Inference System (ANFIS) and 

firefly optimization algorithm was developed to model the process and optimize the operating conditions. 

To conduct the research, industrial data of Abadan refinery FCC process were carefully gathered along a 

definite period. Then a model based on ANFIS was developed to investigate the effect of operating variables 

including reactor temperature, feed flow rate, temperature of top of main column, and the temperature 

of bottom of the debutanizer tower on quality and quantity of gasoline, LPG flow rate, and process 

conversion. Moreover, statistical parameters comprising R2, RMSE, and MRE approved the accuracy of the 

model. Eventually, validated ANFIS model and firefly algorithm as an evolutionary optimization algorithm 

were applied to optimize the operating conditions. Also, three different optimization cases including 

maximization of Research Octane Number (RON) , gasoline flow rate, and conversion were considered. 

In addition, to obtain maximum target output variables, inlet reactor temperature, temperature of top of 

main column, temperature of  the bottom of debutanizer column, and feed flow rate should be respectively 

set at 523, 138, 183  °C and 40731 bbl/day. Also, the sensitivity analysis between the input and output 

variables was carried out to derive some effective rules of thumb to facilitate operation of the process 

under unsteady state conditions. Finally, the obtained result introduces a methodology to compensate for 

the negative effect of undesirable variation of some of the operating variables by manipulating the others. 

Keywords: Fluid Catalytic Cracking, Adaptive Neuro-Fuzzy Inference System, Firefly Algorithm, Optimization, 

RON, Gasoline.
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INTRODUCTION
For over fifty years, Fluid Catalytic Cracking (FCC) 

has been one of the main petroleum refining 

processes to produce gasoline. This is designed to 

process wide range of feed stock including straight 

run distillates, atmospheric and vacuum residue, 

and VGO (Vacuum Gasoil). Two main pieces of 

equipment of this process are riser-reactor and 

regenerator. The oil feed is vaporized and cracked 

to lighter products as it moves up and contacted 

with the hot powdered re-circulating catalyst in 

the riser-reactor. To re-activate the coked catalyst, 
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it is transferred to the regenerator to burn off 

the coke. Same as other chemical processes like 

catalytic reforming process [1], isomerization [2], 

hydrodesulfurization, [3] and thermal cracking [4], 

modeling and simulation are directly applied in a 

FCC process to monitor the performance, optimize 

the operating variables, and control the process 

[5-12,23-26]. Kinetic models with different lumps 

were utilized or developed to estimate the effect 

of different designing or operating variables on the 

conversion of a FCC process or to develop dynamic 

models to control the process [5-11], or it is used 

to optimize the quality of produced gasoline 

[12]. Since the kinetic models are complex, the 

convergence rate of the developed process 

model based on these kinds of models is low. So 

for some applications, other kinds of modeling 

methods such as black box modeling are utilized. 

Moreover, this becomes more significant for 

complex processes such as thermal cracking, FCC 

process, and food industrial processes [13,24-28]. 

For example, an artificial neural network (ANN) 

was applied to investigate the steady state of a FCC 

process located in a Greek refinery complex. In this 

research, a comparison between the developed 

model and a regression model approved that the 

developed intelligent model was more precise in 

comparison with the regression model [27]. Also, 

ANFIS was applied to investigate the hydrocracking 

process [28]. For example, ANFIS was applied to 

investigate the hydrocracking process [28]. In the 

research, sixteen data sets were gathered along 

a definite period. Moreover, thirteen set of data 

were applied to train the model, and the rest were 

utilized to check the validity of the developed model 

[28]. Catalyst-life as one of the most important 

parameters in the processes with catalytic fixed 

bed reactors was not considered in the model. 

In another research, to determine the optimum 

conditions for maximization of gasoline considering 

the allowable olefin content, a fuzzy logic neural 

network combined with genetic algorithm was 

applied [29]. In this research, fifty two data sets 

were totally utilized. However, 34 data sets were 

applied to train the developed model, and 18 data 

sets were allocated to check the validity of the 

model [29]. The intelligent neural network was also 

applied to develop a model predictive controller 

(MPC) system for the FCC process [30].Indeed, 

the trainable nature of the artificial intelligence 

algorithms strengthens the applicability of this kind 

of black box modeling methodology to develop 

MPC systems. Additionally, different evolutionary 

algorithms [31,32] were applied to optimize the 

process. Most of the researches concentrated on 

classical FCC process. However, less attention has 

been paid to the UOP high efficiency FCC process.

In this research, In this research, a black box 

modeling based on ANFIS (Artificial Neural Network) 

will be applied to investigate the productivity 

of the UOP high-efficiency FCC process and its 

dependence on operating conditions The model 

will be trained, tested, and validated based on 

industrial data which are gathered from the FCC 

process of Abadan refinery complex during eighteen 

months. This facilitates the analysis of the effect of 

operating conditions on the quality and quantity 

of produced gasoline. Moreover, to determine 

optimum operating conditions for the improvement 

of quality and quantity of gasoline (RON and 

gasoline flow rate), the adapted developed model 

together with firefly algorithm (as an evolutionary 

optimization algorithm) will be utilized. Finally, the 

result will demonstrate the ability of the selected 
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optimization algorithm to determine suitable 

operating conditions. Moreover, the results will 

apply to figure out certain rules to compensate 

the negative effects of the variation of operating 

variables in different situations.

EXPERIMENTAL PROCEDURES
Specification of the FCC Process
The feedstock of the process is vacuum gasoil 

(VGO) with the characterization demonstrated 

in Table 1. The selected FCC process, is a process 

which is licensed by UOP, and it has high-efficiency 

regenerator technology. Before feeding to the 

process, the feed is preheated to 232   °C  to improve 

the conversion of the process. Then it is injected to 

the riser-reactor in which the feed is vaporized due 

to close proximity to a hot catalyst. The catalytic 

cracking exothermic reactions have occurred in the 

effective volume of riser-reactor while the catalyst 

over oil ratio is between 4 and 9. In addition to 

main products, the coke is also produced and 

formed on catalyst. It is removed by burning later 

in regenerator. The catalyst and product mixtures 

are separated in cyclones. 
Table 1: The characterization of the feedstock of FCC 

of Abadan refinery complex. 
Sp.Gr@ 60 °F 0.906

IBP 290 °C
10 % 307 °C
30 % 355 °C
70 % 440 °C
FBP 570 °C

Carbon Conradson, wt.% 0.7 %

The products are sent to the separation section 

of the process and the catalyst is sent to the 

regenerator to reactivate and coke removal. 

Selected FCC unit processes 45000 bbl VGO to 

produce LPG, HCO, LCO, and gasoline. In addition 

maximum flow rate of produced gasoline is four 

million liters per day. Specification of the utilized 

catalyst is illustrated in Table 2.

Table 2: Fresh FCC catalyst characteristics used in the 
FCC process of Abadan refinery complex.

Apparent bulk density, g/mL 0.7-0.9

Total Surface area, m2/g 130-370

Micropore surface area, m2/g 100-250

Mesopore Surface area, m2/g 30-120

Rare earth content, wt.% Re2O3 None

For Low micropore Surface Area 0.3-1.5

For high micropore surface area 0.8-3.5

Alumina, wt.% Al2O3 25-50

MATERIAL AND METHODS 
Field Data
Main process variables including feed temperature, 

recycled catalyst flow rate, feed flow rate, riser-

reactor temperature, feed to catalyst ratio, 

temperature of the top of the main column 

(TTMC) and the bottom of debutanizer column 

(TBDC), and the pressure of main and debutanizer 

column are the key variables of this process. Based 

on the licensor instructions, feed temperature, 

main distillation column, debutanizer and reactor 

pressure are respectively set in 232  °C, 0.7 barg, 

10.4 barg and 1.2 barg. Also, several variables 

same as the catalyst to feed ratio and the recycled 

catalyst flow rate are crucially dependent on each 

other and severely affect reactor temperature. 

However, based on experiences there are some 

input variables directly effects on output variables. 

These variables are feed flow rate, reactor inlet 

temperature, TBDC, and TTMC which are chosen 

as main input variables. Moreover, to analyze the 

process behavior of targeted FCC process, several 

records of industrial data have been gathered 

during eighteen months and 208 records have 
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been selected as validated data. The upper and 

lower limits of the observed value of the chosen 

input variables and the maximum and minimum 

observed value of the output variables are illustrated 

in Table 3.

Table 3: Upper and lower limits of chosen input, and maximum and minimum observed value of output variables 
of FCC process of Abadan Refinery Complex.

Operating variable Lower limit Upper limit
Feed flow rate (bbl/day) 40000 43000

Reactor Temperature ( °C) 519 525
TBDC ( °C) 169 184

TTMC ( °C) 133 139
Output variable Minimum Value Maximum Value

Gasoline flow rate (bpd) 20580 22600
LPG flow rate (bpd) 8293 8720

RON 92.8 94
Conversion (%) 68.7 70.65

Table 4: Industrial data of FCC unit of Abadan refinery complex utilized to primary train the Neuro Fuzzy system.

Record Feed flow 
rate (bpd)

Reactor 
Temperature 

( °C)
TTMC ( °C) TBDC 

( °C)
Gasoline 
flow rate 

(bpd)
LPG flow 

rate (bpd)

RON
Research 
Octane 

Number(-)

Conversion
(%)

1 40000 525 135 170 20923 8551 94.1 70.51
2 40000 525 135 182 20910 8560 93.9 70.51
3 40000 522 137 176 20735 8446 93.35 69.85
4 40000 523 136 180 20870 8521 93.65 70.18
5 40000 523 136 175 20878 8515 93.65 70.18
6 40000 522 135 174 20705 8395 93.4 69.40
7 40000 523 137 175 20890 8535 93.6 70.25
8 40000 523 135 180 20842 8512 93.7 70.12
9 40000 522 135 175 20700 8400 93.4 69.40

10 40000 522 137 176 20735 8445 93.35 69.85
11 40000 522 136 175 20724 8432 93.35 69.6
12 42000 525 139 175 21824 8720 93.8 69.96
13 43000 522 137 176 22436 8898 93.35 69.85
14 43000 523 135 175 22499 8939 93.70 70.11
15 43000 522 135 177 22396 8875 93.40 69.40
16 43000 522 139 175 22470 8929 93.30 69.92
17 43000 522 138 175 22453 8902 93.30 69.89
18 42000 525 137 180 21798 8714 93.90 69.09
19 42000 519 135 180 21690 8632 92.80 69.40
20 40000 523 136 175 20878 8515 93.65 70.18
21 43000 519 139 182 22255 8832 92.80 68.79
22 43000 520 137 182 22380 8880 93.10 69.40
23 43000 520 139 175 22560 8870 93.30 69.50
24 43000 522 137 182 22560 8965 93.40 69.70
25 40000 519 139 170 20640 8330 92.90 68.79

Records of industrial data which were primarily 

used in the training of the Neuro-fuzzy inference 

system in this research are shown in Table 4. From 

this tabulated data inferred that high reactor 

temperature and low feed flow rate boost up the 

RON (Research Octane Number).
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MATHEMATICAL METHODOLOGY
ANFIS Architecture 
A fuzzy logic and ANN combination is utilized 

in Neuro-Fuzzy technology. Indeed, learning 

capabilities of neural networks with knowledge 

representation of fuzzy logic results in the 

development of adaptive Neuro-Fuzzy inference 

system (ANFIS). Moreover, the Neuro-Fuzzy model 

is based on the Takagi-Sugeno type fuzzy inference 

system with a single output. This model utilizes 

a linear combination of the input parameters to 

predict the output of each rule. The structure of an 

ANFIS with two inputs (x and y) and one output (z) 

is shown in Figure 1. 

If a first-order Sugeno fuzzy model is assumed for a 

system with two inputs and one output, a common 

set of rules is written as below:

Rule 1: if x is A1, and y is B1, then Z1= P1x+q1y+r1.   (1)     

Rule 2: if x is A2, and y is B2, then Z2=P2x+q2y+r2.    (2)

As it is illustrated in Figure 1, the Neuro-Fuzzy 

system contains a total of five layers. Moreover, the 

nodes of each layer have the following functions: 

Layer 1: every node in this layer is an adaptive node 

with the following node function:

Q1,i = μA,i(x) ; i=1,2 or                                              (3)

Q1,i= μB,i-2(x) ; i=3,4                                                       (4)

Figure 1: Basic ANFIS structure utilizes a linear combination of the input parameters to predict the output.
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where x and y are the inputs to the first node, 

and Ai and Bi-2 are the fuzzy set that is associated 

with the node. A “fuzzy set” is a simple extension 

of the definition of a classical set, in which the 

characteristic function is permitted to have any 

value between 0 and 1. In addition, a “fuzzy set” A 

of X can be defined as a set of ordered pairs:

A={(x,μA(x)|xεX}                                                           (5)

where μA(x), which is a membership function for 

the fuzzy set A, maps each x to a membership 

grade between 0 and 1.

Determination of the optimal type and number 

of the membership functions is the primary step 

in the development of the fuzzy inference system. 

The most popular membership functions include 

the triangular, Gaussian, generalized bell, and 

trapezoidal functions, which are defined as follows 

(Equations 6 to 9):

0− − =  − − 
x a c xtriangle(x;a,b,c) max min( , ),
b a c b

              (6)
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 −
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                                   (8)

                                                                                        (9)

in which a, b, c, d, and б are the fundamental 

parameters of the membership functions.

Layer 2: Nodes in this layer are fixed and have the 

label Π. Based on Equation 10, the outputs of nodes 

are the products of all of the incoming signals 

which represent the firing strength of a fuzzy rule.  

O2,i = wi = μAi(x) * μBi (x),      i =1,2                                     (10)

Layer 3: Every node in this layer is also fixed and is 

labeled as N. The ratio of the firing strength of the 

rule relative to the sum of the firing strengths is 

calculated by the ith node:

σ

                                                                                             (11)

The layer outputs are known as “normalized firing 

strength.”

Layer 4: every node (i) in this layer is an adaptive 

node with a node function that is defined as the 

following:

                                                                                      (12)

where iw  is a normalized firing strength from layer 

3 and {pi, qi, ri} is the parameter set of the node. 

The parameters in this layer are called “consequent 

parameters”.

Layer 5: The single node in this layer is a fixed node 

and is labeled Σ. This calculates the overall output 

as the summation of all of the incoming signals. 

1
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Thus an adaptive network, which is functionally 

equivalent to the Takagi–Sugeno-type fuzzy 

inference system, was constructed. Based on the 

ANFIS structure described, the output z can be 

defined as the following:
1 2

1 2
1 2 1 2

= +
+ +

w wz z z
w w w w

                                                                                    (14)

In which p1, p2, q1, q2, r1, and r2 are the linear 

consequent parameters.

A hybrid learning procedure was used to train the 

proposed ANFIS model, which includes the tuning 

of the premise parameters using a back propagation 

technique and the learning of the consequence 

parameters by the least-square method. This hybrid 

learning algorithm is composed of two phases. The 

first is a forward pass in which the node outputs 

are passed forward until they reach layer 4, and the 

consequent parameters are calculated through 

least squares. The second phase is a backward pass 

in which the error rates are propagated backward, 

( ) ( )1 21 1 1 2 2 2= + + + + +w p x q y r w p x q y r
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and the gradient descent technique is used to 

update the premise parameters.

The accuracy of the developed Neuro-Fuzzy model 

is appraised using statistical parameters including 

the coefficient of determination (R2), the root 

mean square error (RMSE), and the mean relative 

error (MRE). The parameters are calculated by the 

following equations:
( )
( )

2

2 1
2

1

1 =

=

−
= −

−

∑
∑

n
expi calii

n
expi expi

y y
R

y y
                                           (15)
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n y
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where yexp and ycal are respectively the experimental 

and model-predicted values. Also, expy  illustrates 

the mean of experimental values. However “n” 

is the total number of data points. To determine 

the best structure of targeted ANFIS model, 

different Neuro-Fuzzy models with different 

numbers of membership functions were checked. 

Finally, it was revealed that a combination of two 

Gaussian functions introduce the best shape of 

the membership function for most precise model. 

In this model, the linguistic labels were chosen to 

represent the input parameters. In addition, values 

of the statistical parameters for the model in the 

case of train and test are illustrated in Table 4. The 

developed ANFIS model has fifty five (55) nodes. 

The number of linear parameters is eighty (80) and 

the number of non-linear parameters is twenty 

four (24).

Optimization
Optimization of the operating conditions for 

achieving a certain goal is always the subject of 

several types of research in the field of the chemical 

process. It may include profits maximization, 

limitation of the production of undesirable products, 

and optimum production of a strategic product.

In the current work, RON maximization, gasoline 

production flow rate, and conversion are the three 

different optimization goals. Firefly algorithm as a 

metaheuristic nature-inspired algorithm is applied 

to attain the optimum operating conditions.

Moreover, this algorithm is based on the social 

(flashing) behavior of fireflies or lighting bugs 

in the summer sky in the tropical regions. It has 

three exact idealized rules which are based on 

some of major flashing characteristics of real 

fireflies [33]. These are as follows: (1) all fireflies 

are assumed as unisex; the fireflies move towards 

more attractive and brighter ones regardless of 

their sex. (2) The amount of attraction of a firefly 

is proportional to the brightness of the fireflies. It 

decreases by increasing the firefly distance from 

others, regarding to the fact that the air absorbs 

the light. However, the brightest ones move 

randomly. (3) The brightness or lighting power of 

a firefly is established by the value of the objective 

function of a given problem. In addition, to apply 

this algorithm a computer code that is published 

by Xin-She Yang, has been utilized [33]. Following 

equations are introduced to obtain maximum RON, 

gasoline production flow rate, and conversion by 

minimizing the difference between the actual and 

the maximum value of the variables:

( )

( ) ( )
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( ) ( )
( )
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max

max
max

2

2

2

1
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RON maxRONf
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f
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Constraints

The constraints indicate the limitations of 

operating conditions which are determined based 

on the authentic process. Equation f(1) shows 

the objective function to minimize the difference 

between the maximum obtainable and actual 

RON. Likewise, f(2) indicates the minimization of 

the difference between the maximum obtainable 

and actual conversion. Moreover, equation f(3) 

introduces an objective function to minimize the 

difference between the actual and maximum 

possible gasoline production flow rate.

519 525≤ ≤Reactor Temperature
4 44 10 4.3 10≤ ≤x Feedflowrate x

133 139≤ ≤Temperature of Top of Main Column
168 184≤ ≤Temperature of Bottom of Debutanizer Column

RESULTS AND DISCUSSION
Industrial data were collected from the FCC process 

during the eighteen-month period. The validated 

industrial data were divided into three groups to 

be applied in training, test, and validation of the 

developed ANFIS model. The results of statistical 

tests and estimation of statistical parameters (R2 

and MRE) for the data are illustrated in Table 4. 

Moreover, the scatter diagrams plotted from the 

ANFIS model prediction for gasoline flow rate, 

RON, LPG flow rate, and conversion are given in 

Figure 2 (a, b, c, and d). In addition, the same type 

of plots for CO, LCO, and lean gas flow rate are 

given in Figure 3 (a, b, and c).

Figure 2: Scatter diagrams for the accuracy of the ANFIS model (Validation case) for prediction of: (a) gasoline 
production flow rate (bbl/day), (b) gasoline RON, (c) LPG production flow rate (bbl/day), and (d) conversion (%).
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Figure 3: Scatter diagrams for the accuracy of the 
ANFIS model (Validation case) for prediction of: (a) CO 
production flow rate (bbl/day), (b) LCO production flow 
rate (bbl/day), and (c) lean gas production flow rate.

Based on Table 4, Figures 2 and 3, it would be 

suggested that the developed ANFIS model 

prediction have enough accuracy to predict the 

output variables. However, the LCO prediction model 

has the lowest precision. Indeed, the LCO prediction 

model has the lowest precision, and the gasoline 

production flow rate has the highest accuracy.

Table 5: Statistical results of Neuro-Fuzzy model for 
prediction of gasoline flow rate, RON, conversion and 

LPG flow rate.

Statistical 
parameter

Gasoline 
flow rate RON LPG flow 

rate CO LCO Lean 
Gas

R2(Train) 0.98 0.94 0.93 0.925 0.91 0.95

MRE 
(Train) 0.41 0.35 0.72 1.31 2.51 1.05

R2 (Test) 0.958 0.927 0.905 0.912 0.902 0.929

MRE 
(Test) 2.78 3.25 4.02 3.45 4.25 3.85

By applying the verified ANFIS model, the effects of 

different operating variables and their interactions 

on output variables are clarified. The main effects 

and the interactions of two major operating 

variables including feed flow rate and inlet reactor 

temperature on the gasoline production flow rate 

are elucidated by exploration of Figure 4. Raising the 

feed flow rate at a stable inlet reactor temperature 

increases the gasoline production rate.

Figure 4: Effects of reactor temperature (°C) and feed 
flow rate (bbl/day) on gasoline production flow rate 
(bbl/day).

CO
 (b

bl
/d

ay
) (

M
od

el
)

CO (bbl/day) 
(Exprimental)

LC
O

 (b
bl

/d
ay

) (
M

od
el

)

LCO (bbl/day) 
(Exprimental)

Le
an

 G
as

 (b
bl

/d
ay

) (
M

od
el

)

Lean Gas (bbl/day) 
(Experimental)

Re
ac

to
r T

em
pe

ra
tu

re
 ( °

C)

Feed Flow rate (bbl/day)



Sensitivity Analysis and Development of a Set of Rules to Operate FCC Process...
    Journal of Petroleum 
Science and Technology

http://jpst.ripi.ir
19 

Journal of Petroleum Science and Technology 2019, 9(3), 10-26
© 2019 Research Institute of Petroleum Industry (RIPI)

Indeed, in the operating range, definite rising in the 

feed flow rate yields almost the same increment 

in the gasoline production rate. In fact, 75 bbl/day 

increments in the feed flow rate would increase 

the gasoline flow rate by 62 bbl/day. 

Moreover, the minor contribution of the inlet 

reactor temperature in the gasoline flow rate is 

related to the negligible effects of rates of reactions 

on the gasoline production flow rate. 

Indeed, the maximum effect of reactor temperature 

is recorded while the feed flow rate is low and less 

than 4.05*104 bbl/day. However, by increasing the 

feed flow rate, the effect of reactor temperature 

is weakened. Eventually, the interaction effects of 

these two parameters can also be inferred from Figure 

4. Indeed, increment in feed flow rate accompanying 

increase or decrease of the reactor temperature 

increases the gasoline production flow rate. However, 

decreasing the feed flow rate declines the gasoline 

flow rate, without considering the decrease or 

increase in the trend of the reactor temperature.

The effect of TTMC and its interaction effect with 

reactor temperature on gasoline flow rate are 

illustrated in Figure 5.

Figure 5: Effects of reactor temperatures (°C) and TTMC 
(°C) on gasoline flow rate (bbl/day).

It is suggested that increasing the TTMC decline 

the gasoline flow rate by 4.65%. This is due to the 

fact that increasing the TTMC increases the escape 

Figure 6: Effects of TBDC (°C) and Reactor Temperature 
(°C) on the gasoline flow rate (bbl/day).

chance of the heavier components from heavy 

products to the gasoline stream. In addition, the 

simultaneous increase in both variables increases 

the gasoline production rate ultimately by 7%. 

However, different variations in TTMC and inlet 

reactor temperature prove that the inlet reactor 

temperature has a prime effect on the gasoline 

flow rate in comparison with TTMC. Also, the study 

suggests that the maximum influence of reactor 

temperature on the gasoline flow rate happen 

at lower TTMC. In addition, the effect of reactor 

temperature is weakened at the medium operating 

temperature range.  

Moving on, the main and the interaction effects of 

TBDC and reactor temperature on the gasoline flow 

rate are given in Figure 6. It is well demonstrated 

that at the specified feed flow rate and TTMC, 

increasing the TBDC decreases the gasoline flow 

rate by 13.3 %. In addition, this observation can be 

related to vaporization of some species of gasoline 

by increasing the TBDC. 

The effects of reactor temperature and feed 

flow rate on RON are illustrated in Figure 7. As a 

whole, an increase in the inlet reactor temperature 

raises the RON. This figure (Figure 7) declares that 

increasing the reactor temperature increases the 
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Figure 7: The Effect of reactor temperature (°C) and 
feed flow rate (bbl/day) on RON.

The main effect of TTMC and its interaction with 

reactor temperature on RON are demonstrated 

in Figure 8. The contour plot in Figure 8 contains 

two definite regions, i.e. the first region with a low 

reactor temperature, and the second region with 

high reactor temperature.

Figure 8: The Effect of reactor temperature (°C) and 
temperature-of-top-of-main-column (°C)   on   RON.

Also, increasing the TTMC raises the RON in the 

former while in the latter, increasing the TTMC 

decreases the RON. Moreover, in the first region 

of the contour, increasing the TTMC will boost the 

ratio of high octane components in the gasoline 

product. However, in the high reactor temperature 

region the gasoline product contains enough 

species to supply the RON, increasing the TTMC 

can vaporize and recycle the components with a 

lower RON in the gasoline stream. Consequently, 

the RON is hindered by increasing the TTMC. By 

making a comparison among the variations of 

RON, TTMC, and reactor temperature, it is proved 

that the reactor temperature has the predominant 

effect. Indeed, increasing the reactor temperature 

by 1 °C will result in increasing one RON unit. 

However, 1 °C TTMC will ultimately improve the 

RON by half of a RON unit. The impact of reactor 

temperature is related to the decisive effect of this 

operating variable on the chemical reactions rate [34].  

The influence of input variables on LPG production 

rate is demonstrated in Figure 9. Moreover, raising 

feed flow rate and inlet reactor temperature 

increases the LPG flow rate. Increasing the feed flow 

rate at low reactor temperature (less than 522 °C) 

generates special trends in the LPG production 

flow rate variation. 

RON by 4.32 %. However, raising the feed flow rate 

would slightly decrease the RON. This is rationalized 

by the direct effect of reactor temperature on the 

reaction network [34]. Generally, increasing the 

temperature accelerates the rate of reactions. 

However, it may also accelerate both desired and 

undesired reactions. On the contrary, increasing 

the feed flow rate decreases the residence time 

of a reactive mixture in the reactor. Eventually, it 

decreases the chance of completion of reactions. 

In the operating range at low feed flow rates and 

temperature, increments in the feed flow rates 

decrease the formation of components which 

boost the RON. On the other hand, at a higher 

range of reactor temperature, increasing the feed 

flow rate decreases the formation of undesired 

products (secondary reactions). This consequently 

leads to a slight increase in a RON rating.
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Re
ac

to
r T

em
pe

ra
tu

re
 ( °

C)

Re
ac

to
r T

em
pe

ra
tu

re
 ( °

C)

Temperature of top main Column ( °C)



Sensitivity Analysis and Development of a Set of Rules to Operate FCC Process...
    Journal of Petroleum 
Science and Technology

http://jpst.ripi.ir
21 

Journal of Petroleum Science and Technology 2019, 9(3), 10-26
© 2019 Research Institute of Petroleum Industry (RIPI)

At first, increasing the feed flow rate increases the 

LPG flow rate. After reaching a maximum value, 

further increments in the feed flow rate decreases 

the LPG flow rate. However, at higher reactor 

temperature (more than 522 °C), increasing the feed 

flow rate increases the LPG production rate. This 

special trend can also be related to the interaction 

of residence time and reactor temperature on the 

reaction rate. Moreover, the amount of feed flow 

rate affects the number of products.

Figure 9: The impact of reactor temperature (°C) and feed 
flow rate (bbl/day) on LPG production flow rate(bbl/day).

In Figure 10, the effect of feed flow rate and reactor 

temperature on total produced cycle oil (LCO 

and HCO) is demonstrated. The figure (Figure 10) 

illustrates that at low feed flow rates and high reactor 

temperature, the maximum cycle oil is observed.

Figure 10: The effect of reactor temperature (°C) and 
feed flow rate (bbl/day) on formation of total cycle oil 
(bbl/day) (LCO and HCO).

By making a comparison among Figures 4, 9, and 

10, it is proved that at low feed flow rates and high 

reactor temperature, both the maximum flow rate 

of cycle oil and the minimum amount of LPG and 

gasoline are observed. However, at a higher reactor 

temperature and feed flow rates, the maximum LPG 

and gasoline flow rates are observed. Moreover, at 

this level, the cycle oil production rate is at the medium 

level. This clarifies the relationship among the products 

and their dependence on the operating variables.

At high reactor temperature and low feed flow 

rates, the reaction network tends to produce heavy 

molecules. However, by decreasing the residence 

time (increasing the feed flow rates), the reaction 

network shifts to produce more light products 

while the reactor temperature raises the rates of 

all reactions. The effect of feed flow rate and reactor 

temperature on total FCC conversion is demonstrated 

in Figure 11. Thus it is reported herewith that the 

conversion of a process is minimized when the 

process operates at low reactor temperature and 

low feed flow rate. However, an increase in reactor 

temperature boosts the process conversion because 

it accelerates the rate of reactions. But, increasing the 

feed flow rate decreases the impact of temperature 

rising, since it decreases the residence time of a 

reactive mixture in the reactor.                 

Figure 11: The effect of reactor temperature (°C) and 
feed flow rate (bbl/day) on process conversion(%).
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The impact of TTMC and its interaction effect 

with reactor temperature are provided by the 

plot in Figure 12. The figure illustrates that the 

maximum conversion is observed at the maximum 

temperature and minimum TTMC. However, at a low 

reactor temperature of less than 522 °C, increasing 

the TTMC increases the process conversion. On 

the other hand, at a higher reactor temperature of 

more than 523 °C, increasing the TTMC decreases 

the process conversion. Furthermore, by having a 

medium reactor temperature range of 522 °C – 523 °C, 

increasing the TTMC has not any strong visible effects 

on the conversion of the process.  

Figure 12: The effect of Reactor temperature and TTMC 
on process conversion.

Up until now, it has been shown that the sensitivity 

analysis presented here has facilitated in scrutinizing 

the results generated from the developed ANFIS 

model. Subsequently, the model was validated, 

Table 6: The optimum operating conditions for three objective functions. 

Record
Objective 
function

(maximization)

Inlet reactor 
temperature

(°C)

TBDC (°C) Feed flow 
rate (bbl/

day)

TTMC
(°C)

RON 
(Research 

Octane 
Number)

Gasoline flow 
rate (bbl/day)

Conversion 
(%)

1  RON 522.6 173 40731 134 97 20404 73.3

2
RON and gasoline 

flow rate 
520 182 40421 139 97 22800 72.16

3
RON, gasoline 
flow rate and 

conversion 
523 183 42225 138 97 22800 74

and it can be applied to investigate the optimum 

operating conditions. Firefly algorithm was further 

applied to minimize the objective function introduced 

by equation (1). Table 6 introduces the optimum 

operating conditions in three different cases.

The three objective functions in Table 6 are 

respectively maximization of RON, of both RON 

and gasoline flow rate and of RON, gasoline flow 

rate, and conversion. From this table, it is thus 

reported herewith by us that maximization of 

all three selected output variables has occurred 

at the following optimum conditions viz (i) inlet 

reactor temperature = 523 °C, (ii) TBDC = 183 °C, 

(iii) feed flow rate = 42225 (bbl/day), and (iv) TTMC 

= 138.0 °C. However, when the goal of optimization 

is maximization of RON, the following optimized 

conditions are suggested as follows: (i) inlet reactor 

temperature = 523 °C, (ii) TBDC = 173 °C, (iii) feed flow 

rate = 40731 (bbl/day), and (iv) TTMC = 134.0 °C.  

The behavior of the firefly optimization algorithm 

is illustrated by Figure 13. The figure shows the 

plot of RON and gasoline production rate versus 

iterations of the firefly algorithm as it approaches 

optimum conditions. Figure 13 also shows that the 

maximum divergence of the sample population is 

observed in the first few tens of iterations. However, 

a rapid decline of the divergence is observed upon 
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Figure 13: Plots of (a) RON and (b) gasoline production 
rate versus the iterations generated by Firefly algorithm.
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CONCLUSIONS
Investigation towards process optimization of fluid 

catalytic cracking (FCC) – a vital refinery process 

which majorly produces gasoline - can be studied by 

analyzing the different range of available collected 

industrial data. The selected output variables 

were respectively gasoline, LPG, LCO, gas and CO 

production flow rates. However, these output 

variables are dependent on other so-called input 

variables, namely the inlet reactor temperature, 

feed flow rate, TTMC and TBDC which are recognized 

as the most effective ones. 

In addition, an ANFIS model system was developed 

and trained by the industrial data gathered from 

the FCC process of Abadan refinery complex. The 

industrial data were gathered during eighteen 

months, and 208 of the gathered industrial 

data were validated and selected for the model 

development. The validated data were divided 

into three sections, to be applied in training, test, 

and validation of the ANFIS model. The developed 

ANFIS model has fifty five (55) nodes. The number 

of linear parameters of the model is eighty (80), 

and the number of nonlinear parameters is twenty 

four (24). The results from the model validation 

confirmed sufficient accuracy.

The sensitivity analysis between the input and output 

variables was carried out by further exploiting the 

validated model data. Indeed, the sensitivity analysis 

clarifies the main and interaction effect of the operating 

variables. In addition, it is resulted in a set of rules to 

properly operate a FCC process with the high efficiency 

regenerator technology in different situations.

It is shown that, the reactor temperature has a strong 

effect on RON, gasoline flow rate, LPG production 

flow rate, and even process conversion. The sensitivity 

analysis also illustrated that at high residence time 

and high reactor temperature, the production rate of 

heavy species was predominant and the amounts of 

light hydrocarbons were in minority. 

Furthermore, in the light of this condition, the 

maximum RON may be obtainable. However, at 

high reactor temperature and low residence time, 

the maximum of light hydrocarbons including 

LPG and gasoline are observed. Moreover, at the 

specified conditions, the cycle oil production rate is 

at the medium level. The observation demonstrates 

that prolonging the residence time assists in the 

formation of heavy species components including 

the cycle oils. In addition, maximization of RON at 

high residence time and high reactor temperature 

improving the iterations until they converge to an 

optimum value. It is also reported herewith that 

after the 200th iteration, all the population samples 

have converged into the optimum value.
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may be related to the fact that some of heavy species 

components including aromatic hydrocarbons have a 

tremendous impact on RON.   

In addition to the above facts, certain guidelines 

could be formed based on the sensitivity analysis. 

The guidelines may be applicable to a FCC operational 

process in anomalous conditions. First of all, the 

effects of decreasing the feed flow rate on gasoline 

production rate could be partly compensated by 

raising the inlet reactor temperature. Averagely, 

changing 1 °C in reactor temperature could balance 

the effect of 300 bbl/day variation in feed flow 

rate. Moreover, RON, being the most important 

qualitative parameter of gasoline, is majorly affected 

by temperature. However, at the temperature higher 

than 523 °C, its dependence on the feed flow rate 

is becoming increasingly more. Indeed, within this 

temperature region, an increment of more than 

500 lb/hr in the feed flow rate may change the 

RON if the reactor temperature has never been 

modified properly. Last but not least, in order to 

determine the optimum conditions for different 

objective functions as defined in this study, the 

firefly optimization algorithm was applied.

The three alternatives, i.e. (i) RON, (ii) RON and 

gasoline flow rate, and (iii) RON, Gasoline flow rate, 

and conversion were analyzed and maximized. It was 

shown that maximization of RON, gasoline flow rate 

and conversion may be realized when the feed flow 

rate, inlet reactor temperature, TTMC, and TBDC set at 

42225 bbl/day, 523 °C, 138 °C, and 183 °C respectively. 

The results of this research can be applied to facilitate 

operating determinations in a different situation 

such as abnormal states to compensate for the 

negative effect of some variation of operating variables. 

Also, the well trained ANFIS model can be implemented 

in the development of a robust MPC system. 
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NOMENCLATURES
ANN : Artificial Neural Network
FCC : Fluid Catalytic Cracking
VGO : Vacuum Gasoil
ANFIS : Adaptive Neuro-Fuzzy Inference System
MPC : Model Predictive Controller
R2 : Coefficient of Determination 
RMSE : Root Mean Square Error
MRE : Mean Relative Error
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