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ABSTRACT
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to 

the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, 

especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to 

develop a model to diagnose drilling effectivity. Hence, we arrived at graphical correlations which utilized 

the rate of penetration, depth of cut, specific energy, and cation exchange capacity in order to provide a 

tool for the prediction of drilling classes. 

This paper describes a robust support vector regression (SVR) methodology that offers superior 

performance for important drilling engineering problems. Using the amount of cation exchange capacity 

of the shaly formations and correlating them to drilling parameters such as the normalized rate of 

penetration, depth of cut, and specific energy, the model was developed. The method incorporates hybrid 

least square support vector regression into the coupled simulated annealing (CSA) optimization technique 

(LSSVM-CSA) for the efficient tuning of SVR hyper parameters. Also, we performed receiver operating 

characteristic as a performance indicator used for the evaluation of classifiers. The performance analysis 

shows that LSSVM classifier noticeably performs with high accuracy, and adapting such intelligence system 

will help petroleum industries deal with the well drilling consciously. 
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INTRODUCTION
The remarkable portion of footage drilled occurs 

in shales; moreover, the drilling operation is 

performed at high ROP because shales are not 

rigid and stiff [10]. Due to chemical and mechanical 

factors, the cuttings stick together or to the bit. 

Therefore, the bit performance decreased which 

subsequently caused the drilling rate to decline 

[10,37,40,41]; this phenomenon is called “bit 

balling.” The agglomeration and compaction of clay-

rich cuttings to the bit, junk slots of a bit, or bottom 

hole assembly surfaces are regarded as balling, and 

they deteriorate the overall performance [39,48].

Smith and his coworkers [39,40,41,42] deduced 

that when clay-rich shale is drilled with water-

based mud, the main reason for low rate of 
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penetration (ROP) is global balling. Therefore, 

whatever prevents or minimizes the global balling 

can improve and optimize the drilling performance. 

Bit Balling Investigations Review
Numerous research studies have considered the 

framework and the effect of bit balling, and drilling 

ineffectivity has subsequently been taken into 

account when drilling a shale formation. The bit 

balling study has been divided into mechanical 

and chemical approaches [5,7,8,10,14,31,34,46, 

47]; the mechanical explanations ascribe balling 

to two problems [3]: (I) the difficulty in preserving 

fluid between the cutter and the cuttings lead 

to differential sticking of the cuttings to the bit 

(cutter), and (II) the dilatancy in the shear zone of 

the cuttings causes a drop in pore pressure within 

the cuttings, which leads to differential sticking. In 

addition, the chemical approach can be explained 

via two strategies [3]: (I) the tendency of drilling 

fluid to wet the surface of the bit, and (II) sticking 

of the cuttings by virtue of swelling, because 

hydrophilic cuttings try to imbibe water. This 

water imbibition is due to [3]: (1) cohesion among 

cuttings, and (2) adhesion to bit surfaces. 

Furthermore, the effect of other possible 

parameters on bit balling was also surveyed by 

exploring shale properties (such as cation exchange 

capacity (CEC)) [12,14,31], mud properties [5,7,8, 

10,12,15,34,44,46,47,56], down-hole pressure [5, 

7, 10, 12, 34, 46], and bit and cutter design [51, 56]. 

Other studies [1 ,3,6,8,17,21,22,26,27,29, 

35,39,40,43,50,51,56] have been developed and 

proposed several normalized, dimensionless, and 

bit operating parameters for characterizing and 

diagnosing bit performance.

In this paper, in addition to the normalized rate 

of penetration (ROPn), other parameters such as 

specific energy (Es) and depth of cut (Dcut) are also 

used to represent drilling performance. The field 

data used in the correlation are obtained from the 

southern Iranian oil field drilling wells at the time 

of drilling.

EXPERIMENTAL PROCEDURES 

The Normalized Rate of Penetration
For making a comparison among the combined 

data from various drilled intervals, normalizing the 

ROP has been suggested [25]. The normalization is 

implemented by the following model[15]:

actual
2

60

n

b

ROPROP
WOB rpm

d

=
   
   

  

                                               (1)

where, ROPactual , ROPn , WOB, db , and rpm are 

the actual rate of penetration, normalized rate of 

penetration, weight on bit, bit diameter, and rotary 

speed respectively.

Specific Energy
Pessier and Fear (1992)  defined specific energy 

as the work done per unit volume of rock drilled. 

In the clean drilling, the specific energy decreases 

gradually, whereas in the balling region, the 

specific energy increases gradually. In general, a 

relatively low value implies efficient drilling and/

or weak rock, and a high value denotes ineffective 

drilling and/or strong rock [25]. The equation used 

by Pessier and Fear (992) to express specific energy 

is defined by:
120

(  ) (  )s
WOB rpm TorqueE

Borehole Area Borehole Area ROP
π × ×

= +
×

    (2)

where Es, WOB, rpm, Torque, and ROP are 

correspondingly specific energy, weight on bit, 

rotary speed, bottom hole torque, and the rate of 
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penetration.

A balled or worn bit requires higher specific energy 

than a new and/or clean bit for drilling the same 

rock under identical conditions. The difference 

between total torque and torque off-bottom is used 

to estimate bottom hole torque and to subsequently 

calculate the specific energy for all bit runs[25].

Depth of Cut
Smith (1998) defined the depth of cut as a 

supplementary parameter for surveying drilling 

performance:

5cut
ROPD

rpm
=

×
                                                                 (3)

where Dcut, ROP, and rpm represent the depth 

of cut, rate of penetration, and rotary speed 

respectively.

Cation Exchange Capacity
The cation exchange capacity (CEC) is a tool to 

describe the electrolytic cation absorbability 

of a clay-rich rock onto pore surfaces. CEC 

measurement in oil and gas studies is usually used 

for shaliness evaluation of sedimentary formations 

[52]. However, the CEC of rocks in bore hole 

cannot directly and continuously be measured. 

The measurement of CEC is subject to laboratory 

or empirical correlations developed from logs. 

Typically, the oil and gas industries measure the 

CEC with an API-recommended methylene blue 

capacity test [33], but by taking the advantage of 

the logs derived, using correlations is a beneficial 

way. In the Appendix, the corresponding calculation 

and relationship for empirical correlations are 

described.

Support Vector Machines
Support vector machines (SVM) on the basis 

of statistical learning theory and structural risk 

minimization were introduced by Vapink in 1955 

[48]. The SVM was constructed to maximize the 

minimum distance between the data which leads to 

an optimum hyper-plane. Assuming the objective 

is f (x) = ω.x + b, where the training set is given 

by {(xi,yi)}i=1,2,.,l, xi ∈  R is the input and yi∈ {-1,1} 

is the output. For the linear separable case, SVM 

formulations appear to be:

1 1
1 1

 + ≥ + = +
 

+ ≥ + = + 

T
i i

T
i i

w x b    if    y
w x b    if    y                                    (4)

And for the non-separable case,

( )
( )

1 1
1 1

∅ + ≥ + = +
∅ + ≥ + = +

T
i i

T
i i

w x b    if    y
w x b    if    y                                 (5)

where, ∅ (x) maps the input data into a higher 

dimensional feature space. Support vector machines 

for multi-classification have been developed in 

different supervised classification applications for 

various issues [4,13,16,19,24,30,32,54,55,57].

A nonlinear kernel function computes the hyper-plane 

with a  maximum  margin of 
2

w  between the classes.

Standard SVM model utilizes the quadratic 

programming problem in the following equation:

( )( )
1

1
2

1 0 1
=

+ ξ

∅ + = −ξ ξ ≥ = …

∑
l

T
i

i

T
i i i i

min w w C

s.t      y w x b  ,  , i , , l

 (6)

where, C is the representative of the trade-off 

parameter.

By implementing Karush-Kuhn-Tucker (KKT) and 

using Lagrangian multipliers, αi, the quadratic 

programming problem can be solved. Consequently, 

w can be obtained by using ( )
1=

= α ∅∑
s

t j t j t j
j

w y x  

where, αi is support vector (SV) used to specify 
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decision boundary.

Let donate tj (j=1, ..., s)j to the s support vectors. 

Then, one can rewrite: 

( )
1

= α ∅
=

∑ t j t j t j

S
w y x

j
                                              (7)

By taking the dual problem into account, the 

quadratic programming problem would be solved.

( ) ( )
1

1

1
2

0

0

=

=

α =− α α

≤ α ≤ ∀ 
 
 α = 
 

∑

∑

l

i i i j i j
j

i
l

i i
j

max Q  y y K x , x

C , 
s .t . 

y

                   (8)

According to Mercer theorem, the kernel is similar 

to the following equation:

( ) ( ) ( )= ∅ ∅T
i j i jK x , x x x                                (9)

The general formulation for SVM is represented by:

( ) ( )
1=

 
= α +  

 
∑

l

i i i j
j

y x sign y K x , x b                     (10)

Least Square Support Vector Machines
Suykens and Vandewalle proposed a modified 

version of SVM called least square SVM (LS-SVM) 

[45]. Like SVM, LS-SVM has application in both 

regression and classification cases. LS-SVM has 

reduced the run time and shown more adaptivity. 

Moreover, LS-SVM draws attention because it 

employs an equality constraint-based formulation 

instead of using quadratic programming methods.

In LS-SVMs, the regression appears as:

( )( )

2

1

1
2

1 0 1
=

+

∅ + = − ≥ = …

∑
l

T
i

i

T
i i

min w w C e

s.t       y w x b e  ,      i , i , , l

 (11)

The Lagrangian equation is defined as follows:

( ) ( )( ){ }2

1 1

1 1
2

, , ;  
l l

T T
i i i i

i i

L w b e W W C e y w x b eα α
= =

= + − ∅ + − +∑ ∑  

(12)

where, Lagrangian multipliers αi ∈  R; if Lagrangian 

equation is differentiated with respect to w, b, αi, 

and ei, and the conditions are applied, one may 

obtain:

( )

( )( )
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Omitting e and w results in a KKT system: 

1

00
1−

   
=   Ω+   

TY
Y C I

                                             (14)

where, C is a positive constant, and b is the bias.
( )
( )
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(15)

By applying the Mercer condition, the final result 

would be:

( ) ( )
1=

 
= α +  

 
∑

l

i i i j
j

y x sign y K x , x b     (16)

The most common kernel functions used in SVM 
are defined as follows [2,9]:
1. Linear kernel:     ( ) =i j i jK x , x x x                    (17)

2. Polynomial kernel: 

( ) ( ) 0= + ∈Θ ≥
d

i j i jK x , x x x C    for  d ,c       (18)

3. Gaussian (RBF) kernel:
2

i j
i j 2

x x
K(x , x ) exp( )

2
− −

=
σ

 

                                (19)

Coupled Simulated Annealing
Coupled simulated annealing (CSA) method was 

proposed by Xavier de Souza et al. in 2010 [53]. 

CSA features a new form of acceptance probability 

function that can be applied to an ensemble 

of optimizers. This approach considers several 

current states which are coupled together by their 

+1
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energies in their acceptance probability function. 

Moreover, as it is distinct from classical simulated 

annealing (SA) techniques [1,29], parallelism is an 

inherent characteristic of this class of methods. 

The objective of creating coupled acceptance 

probability functions that comprise the energy of 

many current states, or solutions, is to generate 

more information when deciding to accept less 

favorable solutions.
The following equation describes the acceptance 
probability function A with coupling term ρ:

( )

( )

( )

∞

θ

∞

− 
 
 ρ → =
− 

+ρ 
 

i

k
i i

i

k

E y
exp

T
A ,x y

E y
exp

T

                     (20)

where, Aθ(ρ, xi→yi) is the acceptance probability 
for every ix ∈Θ , iy ∈ϒ and ϒ ⊂ Θ . ϒ denotes the 

set of all possible states, and the set { } 1
q

i ix
=

Θ ≡  
is presented as the set of current states of q 
minimizers; moreover, Tk

ac is the acceptance 
temperature parameter at time instant k. The 
variance σ2 of Aθ is equal to:

Θ
∀ ∈Θ

σ = −∑ A
q q

2 2
2

x

1 1                                           (21)

The coupling term ρ is given by:

( )
j

i

x k

E y
exp

T ∞
∈Θ

− 
ρ =  

 
∑                                                     (22)

Hence, CSA considers many current states in the 

set Θ, which is a subset of all possible solutions ϒ, 

and accepts a probing state yi based not only on the 

corresponding current state xi but by considering 

also the coupling term, which depends on the 

energy of all other elements of ϒ.

Performance Evaluation: Receiver 
Operating Characteristic (ROC)
The ROC curve [18,21] shows the separation 

abilities of a binary classifier; by setting different 

possible classifier thresholds, the data set is tested 

on misclassifications. If the plot has an area under 

the curve equal to 1 for the test data, a perfectly 

separating classifier is found (on that particular 

dataset); if the area is equal to 0.5, the classifier 

has no discriminative power at all.

The receiver operating characteristic (ROC) curve 

can be used to measure the performance of a 

classifier. ROC utilizes sensitivity and specificity 

analyses as given by:

TPSensitivity(%) 100
TP FN

= ×
+

                                         (23)

TNSpecificity(%) 100
FP TN

= ×
+

                                     (24)

where TP, TN, FP, and FN denote true positives, 

true negatives, false positives, and false negatives 

respectively.

True Positive (TP): An input is detected Effective as 

diagnosed by field observation, Effective.

True Negative (TN): An input is detected Ineffective 

as diagnosed by field observation, Ineffective.

False Positive (FP): An input is detected Effective, 

but it is experimentally labeled Ineffective.

False Negative (FN): An input is detected Ineffective, 

but it is experimentally labeled Effective.

Cation Exchange Capacity Measurement
The API-recommended methylene blue test (MBT) 

is carried out by providing one gram of finely 

ground dried shale. Then, the powdered shale is 

dispersed in water with a small amount of sulfuric 

acid and hydrogen peroxide (acting as a dispersant). 

Afterwards, it boils gently for a few minutes, 

and then it cools to reach room temperature. 

Subsequently, it is titrated by a methylene blue 

solution. When a drop of the sample suspension 

is placed on a filter paper, and the result is a faint 
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blue halo surrounding the dyed solids, the end 

point is reached. Also, the CEC analyses can be 

performed at the well site with a minimum amount 

of equipment.

Results and Discussion
The data have been gathered from a shaly 

formation in one of the southern Iranian oilfields. 

The formations were drilled by a PDC bit using 

water-based mud. For evaluating and training the 

proposed model, the data set was divided into 

two categories. A randomly 12 data sets were 

selected for the testing stage, and the remaining 

data sets were used for training the diagnostic 

model. The method for measuring CEC is described 

in the preceding section. The input parameters 

to LS-SVM classifier include cation exchange 

capacity, normalized rate of penetration, depth 

of cut, and specific energy, whereas the output 

parameter represents the drilling effectivity/

ineffectivity. Furthermore, in the present study, it 

is tried to correlate CEC with the normalized rate 

of penetration, depth of cut, and specific energy in 

order to develop such classifications. It means that 

the effectivity/ineffectivity of drilling operations 

can be assessed by relating the aforementioned 

parameters.

In a separate study, the same dataset was exposed 

to the LS-SVR algorithm only (without the CSA 

algorithm), and the different parameters were 

optimized based on an exhaustive search. It was 

found out that it was not possible to reach the best 

solutions starting from arbitrary initial conditions. 

In particular, it is difficult to obtain the optimum 

choices of σ2 and γ after starting with some discrete 

values. The solutions frequently become stuck 

in sub optimal local minima. These experiments 

justified the use of a hybrid technique for LS-SVR 

parameter tuning. Then, these data were exposed 

to the hybrid CSA-LSSVM model. Figure 2 depicts 

the flowchart of the developed CSA-based hyper 

parameter determination approach for SVM.

The k-fold method presented by Salzberg was 

applied to the experiments using a k value of 10 

[38,20]. Thus, the dataset was split into 10 parts, 

with each part of the data sharing the same 

proportion of each class of data.

Due to fewer parameters to set and an excellent 

overall performance, the RBF is an effective 

option for kernel function [49,26]. Through an 

initial experiment without feature selection, the 

parameter values of the proposed CSA-LS-SVM 

approach were set as follows: T0 and Tk
ac were set 

to 1.0, and the range of the parameters of RBF 

kernel is selected arbitrary: σ2 = [0.001, 103] and 

C = [0.01, 104]. The optimal parameters for each 

pair of the inputs are listed in Table 1.

Table 1: Optimal values of categories optimized by 
CSA optimization technique.

C σ2

DCut-CEC 1.6889 1.1384

1/[ES]-CEC 2.5756 2.4853

ROPNormalized-CEC 1.2435 1.7996

As shown in Figure 1, in the case of Dcut versus CEC, 

the classifier divided the plane area into two parts: 

effective and ineffective drilling region. One pattern 

represents minimally effective bit cleaning or 

reversible balling, and the other pattern represents 

ineffective drilling or irreversible balling.
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Figure 1: LSSVM model classify the drilling data into 
effective and ineffective for inputs of CEC-Dcut .

Figure 2: LS-SVM model classifies the drilling data into 
effective and ineffective for the inputs of CEC-1/Es.

As can be seen in Figure 3, the normalized rate of 

penetration was employed to distinguish effective 

bit cleaning from an ineffective drilling pattern. 

Figure 3: LS-SVM model classifies the drilling data into 
effective and ineffective for the inputs of CEC-ROPn.

As Dcut and CEC increase simultaneously, effective 

drilling can be achieved. In other word, at low 

depth of cut, when the CEC is high, the drilling 

will be effective. Correlating CEC versus reciprocal 

of specific energy (Figure 2) shows a same trend 

as one described for Dcut vs. CEC. Since, specific 

energy is related to the strength of the rock being 

drilling and subsequently efficiency of the drilling 

operation, therefore a low value of specific energy 

implies an effective drilling operation, while high 

values shows an ineffective drilling process.

Figures 4 to 6 represent a general template detecting 

drilling ineffectivity. In addition, they can be used 

as a graphical correlation which utilizes ROPnormalized , 

Dcut , and the reciprocal of Es as tools for determining 

the functionality of drilling.

Figure 4: General template or graphical correlation for 
diagnosing drilling effectivity by inputs of CEC-Dcut .

Average Depth of Cut (in)

Average Depth of Cut (in)
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Table 2 performs a comparison between the 

observed and simulated drilling manner, where 

the inputs are Dcut- CEC. The predicted data show 

good agreement with the observed data with no 

false prognostication. 

Table 2: Making a comparison between the observed and 
simulated drilling effectively for the inputs of DCUT-CEC.

NO. DCut CEC Drilling 
Observed

Drilling 
Simulated

1 0.037535 36 Effective Effective

2 0.023459 11 Ineffective Ineffective

3 0.023459 8 Ineffective Ineffective

4 0.037535 35 Effective Effective

5 0.05161 30 Effective Effective

6 0.028151 10 Ineffective Ineffective

7 0.029324 22 Ineffective Ineffective

8 0.032843 35 Effective Effective

9 0.042226 33 Effective Effective

10 0.070377 25 Effective Effective

11 0.030028 26.8 Ineffective Ineffective

12 0.032843 9 Ineffective Ineffective

13 0.05161 30.5 Effective Effective

Also, Table 3 shows a comparison between the 

observed and simulated drilling effectively for the 

inputs of 1/[Es]-CEC.

Table 3: A comparison between the observed and 
simulated drilling effectively for the inputs of 1/[ES]-CEC.

NO. 1/[ES] CEC Drilling 
Observed

Drilling 
Simulated

1 0.000277 28 Effective Effective

2 0.000238 33 Effective Effective

3 0.00012 27 Ineffective Ineffective

4 9.8E-05 16 Ineffective Ineffective

5 0.000159 36 Effective Effective

6 8.01E-05 24 Ineffective Ineffective

7 8.01E-05 9 Ineffective Ineffective

8 8.01E-05 9 Ineffective Ineffective

9 0.000238 30 Effective Effective

10 0.000218 32 Effective Effective

11 0.000218 30.5 Effective Effective

12 0.0001 25 Ineffective Ineffective

Figure 5: General template or graphical correlation for 
diagnosing drilling effectivity by inputs of CEC-1/Es.

Figure 6: General template or graphical correlation for 
diagnosing drilling effectivity by inputs of CEC-ROPn .
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Figure 8: Receiver Operating Characteristic curve for 
analysis of model performance for CEC-1/Es.

ROC curve for 1/[Average Specific Energy]

Figure 7: Receiver Operating Characteristic curve for 
analysis of model performance for CEC-Dcut.

ROC curve for Depth of Cut

Moreover, Table 4 shows a comparison between 

the observed and simulated drilling effectively for 

the inputs of 1/[Es]-CEC.

Table 4: A comparison between the observed 
and simulated drilling effectively for the inputs of 

ROPNormalized-CEC.

NO. ROPNormalized CEC Drilling-
Observed

Drilling-
Simulated

1 21.58898 26 Effective Effective

2 12.33656 35 Effective Effective

3 12.33656 36 Effective Effective

4 13.87863 35 Effective Effective

5 18.50484 33 Effective Effective

6 15.4207 34 Effective Effective

7 9.25242 17 Ineffective Ineffective

8 6.16828 15 Ineffective Ineffective

9 4.62621 19 Ineffective Ineffective

10 9.715041 20 Ineffective Ineffective

11 10.79449 9 Ineffective Ineffective

12 7.71035 11 Ineffective Ineffective

Furthermore, this comparison has been performed 

for 1/[Es]-CEC and ROPnormalized . For both, the results 

elucidate the high powerful ability of LS-SVM 

classifier.

ROC curves are used to exhibit the performance 

and accuracy profile of classifications. The x-axis 

was set to (1-specificity), while y-axis was assigned 

to be sensitivity. As stated by Equations 19 and 

20, one may obtain the following relations at the 

upper left-corner:

1      0TP ThenSensitivity FN
TP FN

= = → =
+

                    (26)

1- 1- 0      0TN ThenSpecificity FP
FP TN

= = → =
+           (27)

Hence, whatever profile approaches the upper-left 

corner, false negative and false positive come near 

zero, and the classifier acts ideally and preferably. 

As displayed in Figures 7-9, the receiver operating 

characteristic (ROC) profile headway closes to 

upper-left corner and proves the high accuracy and 

reliable behavior of LS-SVM classifier.
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CONCLUSIONS
This study presents a CSA-based approach capable 

of searching for the optimal parameters of SVM 

to diagnose drilling ineffectivity. Four parameters 

(in three pairs) were employed as tools to develop 

graphical correlations. The data were collected 

from Iranian oilfields drilled by PDC bit with 

water-based mud. For evaluating CSA-LS-SVM 

model, receiver operating characteristic (ROC) was 

adapted to monitor the model behavior. In addition, 

a comparison of the obtained results with the 

observed results demonstrates that the proposed 

CSA-LS-SVM works functionally and practically. 

Furthermore, CSA-LS-SVM is an intelligent system 

with a self-adapting attribute which helps drilling 

industry to upgrade drilling performance.

APPENDIX
To calculate CEC using log data, Rsh, ρma, φt, Fsh, and 

temperature (T) have to be estimated. First, one 

should calculate the counterion concentration, Qv 

(meq/cc pore volume)as follows:

ROC curve for Normalized ROP

Figure 9: Receiver Operating Characteristic curve for 
analysis of model performance for CEC-ROPn.

max

sh
v

sh

FQ
R B

=                                                                  (1)

Bmax can be calculated using the following correlation 

derived from the experimental data collected by 

Waxman and Thomas (1975)[58].

2
max 0.0003 0.205 0.0929B T T= − + −                      (2)

where, T(°C) is the temperature of the zone of 

interest , and Bmax (mho/m/(meq/cc)) is the maximum 

equivalent counterion conductance.

Qv is related to cation exchange capacity by:

( )
100

1
t

v
ma

CEC Q φ
φ ρ

=
−

                                                     (3)

where, φt (φt = φe + φB) is the total porosity, and 

φe is the effective porosity; φB is the fractional 

volume of water bound to shale, and ρma (gr./cc) 

is the density of rock matrix containing shale, and 

CEC (meq/100 gr.) is the cation exchange capacity.

Using the approximation adapted in the dual water 

model, the total porosity is calculated as an average 

of density and neutron porosity, i.e.:

2
Neutron Density

t
φ φ

φ
+

=                                                            (4)

The shale formation factor is then calculated by:

2
sh tF φ −=                                                                           (5)

ρma can be obtained from a core or cutting analysis 

if it is available; otherwise, the analyst will have to 

select a representative value. Fsh and Rsh are the 

shale formation resistivity factor and resistivity 

respectively.
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NOMENCLATURES
CEC : Cation Exchange Capacity
CSA : Coupled Simulated Annealing
db : Bit Diameter

Es : Specific Energy (kpsi)
FN : False Negative
FP : False Positive 
KKT : Karush-Kuhn-Tucker 

MBT : Methylene Blue Test 
ROC : Receiver Operating Characteristic 
ROP : Rate of Penetration [L/T]
ROPn : Normalized Rate of Penetration 
rpm : Rotary Speed [L/T]
SVR : Support Vector Regression
TN : True Negative
TP : True Positive   
WOB : Weight on Bit

REFERENCES 
1. Aarts E. and Korst J., “Simulated Annealing and 

Boltzmann Machines,” New York: John Wiley 

and Sons, 1989, 415-417. 

2. Abe S., “Support Vector Machines for Pattern 

Classification,” New York: Springer-Verlag 

Springer, 2005, 1-467.

3. Aghassi A., “Investigation of Qualitative 

Methods for Diagnosis of Poor Bit Performance 

Using Surface Drilling Parameters,” MSc Dissertation, 

Louisiana State University, 2003, 1-135.

4. Al-Anazi A. F. and Gates I. D., “Support 

Vector Regression for Porosity Prediction in 

a Heterogeneous Reservoir: a Comparative 

Study,” Computations and Geosciences, 2010, 

36, 1494–1503.  

5. Allred R. B. and McCaleb S. B., “Rx for Gumbo 

Shale Drilling,” SPE 4233, The Sixth Conference 

on Drilling and Rock Mechanics of Society of 

Petroleum Engineers of AIME, Dallas, TX, 1973.

6. Bible M., Lesage M., and Falconer I., “Method 

for Detecting Drilling Events from Measurement 

While Drilling Sensors,” USA Patent 4876886, 

Anadrill Inc., 1989.

7. Bland R., Haliday B., Illerhaus R., Isbell M., and 

et al., “Drilling Fluid and Bit Enhancement for 

Drilling Shales,” AADE Annual Technical Forum-

Improvements in Drilling Fluids Technology, 

Houston, Texas, 1999.

8. Bourgoyne Jr., A. T., Chenevert M. E., Milheim 

K. K., and Young Jr. F.S., “Applied Drilling 

Engineering,” SPE Text Book Series, Richardson, 

TX, 1991. 

9. Burges C. A. “Tutorial on Support Vector 

Machines for Pattern Recognition,” Data 

Mining Knowledge Discovery 2, 1998, 121-167.

10. Chesser B. G. and Perricone A. C., “A 

Physicochemical Approach to the Prevention 

of Balling of Gumbo Shale,” SPE 4515, 48th 

Annual Fall Meeting of the Society of Petroleum 

Engineers of AIME, Las Vegas, NV, 1973.

11. Cheatham C. A. and Nahm J. J., “Bit Balling 

in Water-Reactive Shale During Full-Scale 

Drilling Rate Test,” IADC/SPE 19926, IADC/SPE 

Conference, Houston, 1990. 

12. Cheatham C. A., Nahm J. J., and Heikamp 

N. D.  “Effect of Selected Mud Properties on 

Rate of Penetration – Full-Scale Shale Drilling 

Simulations,” SPE/IADC 13465, SPE/IADC 

Drilling Conference, New Orleans, LA. March, 

1985.

13. Chamkalani A., “Application of LS-SVM 

Classifier to Determine Stability State of 

Asphaltene in Oilfields by Utilizing SARA 

Fractions,” Petroleum Science and Technology, 

2011, 6-11. 



A. Sameni and A. Chamkalani
Journal of Petroleum
Science and Technology

Journal of Petroleum Science and Technology 2018, 8(1), 03-16
© 2018 Research Institute of Petroleum Industry (RIPI)
  14

http://jpst.ripi.ir

14. Copper G. A. and Roy S., “Prevention of Bit 

Balling by Electro-Osmosis,” SPE 27882, SPE 

Western Regional Meeting, Long Beach, CA., 

1994.  

15.  Demircan G., Smith  J. R., and Bassiouni Z., 

“Estimation of Cation Exchange Using Log Data: 

Application to Drilling Optimization, Society 

of Petrophysicists and Well Log Analysts 

(SPWLA),” 41st Annual Logging Symposium, 

Dallas, Texas, June, 2000.

16. Du C. J. and Sun D. W., “Multi-Classification 

of Pizza using Computer Vision and Support 

Vector Machine,” Journal of Food Engineering, 

2008, 86, 234-242.

17. Falconer I. G., Burgess T. M., and Sheppard M. 

C., “Separating Bit and Lithology Effects from 

Drilling Mechanics Data,” IADC/SPE 17191, 

Drilling Conference, Dallas, TX, 1988.

18. Fawcett T., “An Introduction to ROC Analysis,” 

Pattern Recognition Letters 27, 2006, 861-874.  

19. Gao G. H., Zhang Y. Z., Zhu Y., and Duan G. H., 

“Hybrid Support Vector Machines-Based Multi-

Fault Classification,” Journal of China University 

of Mining Technology, 2007, 17, 246-250.

20. Han J. and Kamber M., “Data Mining: Concepts 

and Techniques,” 3rd ed., Morgan Kaufmann, 

San Francisco, 2011, 1-673.

21. Hanley J. A. and McNeil B. J., “The Meaning and 

Use of the Area Under a Receiver Operating 

Characteristic (ROC) Curve,” Radiology, 1982, 

143, 29-36. 

22. Hood J. A., Leidland B.T., Haldorsen H., and 

Heisig G., “Aggressive Drilling Parameter 

Management Based on Down-hole Vibration 

Diagnostic Boosts Drilling Performance in 

Difficult Formation,” SPE 71391, SPE Annual 

Technical Conference and Exhibition, New 

Orleans, L.A., 2001.

23. P. A. Watson, “Drilling Fluids,” SPE/IADC 21933, 

Drilling Conference, Amsterdam, Netherlands, 

2001. 

24. Horng M. H., “Multi-class Support Vector 

Machine for Classification of the Ultrasonic 

Images of Supraspinatus,” Expert System 

Applications, 36, 2009, 8124-8133. 

25. Ipek G., Smith J. R., and Bassiouni Z., “Diagnosis 

of Ineffective Drilling Using Cation Exchange 

Capacity of Shaly Formations,” Journal of 

Canadian Petroleum Technology, 2006, 45, 26-

30.

26. Keerthi S. S. and Lin C. J., “Asymptotic Behaviors 

of Support Vector Machines with Gaussian 

Kernel,” Neural Computation, 2003, 15, 1667-

1689. 

27. King C. H., Pinckard M. D., Krishnamoorthy 

K., and Benton D. F., “Method of and System 

for Optimizing Rate of Penetration in Drilling 

Operations,” USA Patent 6155357, Noble 

Drilling Services Inc., 2000.

28. King C. H., Pinckard M. D., Sparling D. P., and 

Weegh A. O. D., “Method of and System for 

Monitoring Drilling Parameters,” USA Patent 

6152246, Noble Drilling Services Inc., 2000.

29. Kirkpatrick S., Gelatt Jr. C., and Vecchi M., 

“Optimization by Simulated Annealing,” 

Science, 1983, 220, 671-680.

30. Lee Y. K. and Lee C. K., “Classification of Multiple 

Cancer Types by Multi-Category Support 

Vector Machines using Gene Expression Data,” 

Bioinformatics, 2003, 19, 1132-1139.

31. Ledgerwood L. W. and Salisbury D. P., “Bit 

Balling and Well-Bore Instability of Down-

Hole Shale,” SPE 22578, 66th Annual Technical 

Conference and Exhibition of Society of 



The  Application of Least  Square  Support  Vector  Machine as a  ...
    Journal of Petroleum 
Science and Technology

http://jpst.ripi.ir

15 

Journal of Petroleum Science and Technology 2018, 8(1), 03-16
© 2018 Research Institute of Petroleum Industry (RIPI)

Petroleum Engineers, Dallas, TX, October, 1991.

32. Li D., Yang W., and Wang S., “Classification of 

Foreign Fibers in Cotton Lint using Machine 

Vision and Multi-class Support Vector 

Machine,” Journal of Computers and Electronics 

in Agriculture, 2010, 74, 274-279.

33. Mike Stephens, Sandra Gomez-nava and Marc 

Churan, “Methylene Blue Test for Drill Solids 

and Commercial Bentonites,” Section 12 in: 

API Recommended Practices 13I: Laboratory 

Testing of Drilling Fluids, 7th ed. and ISO 

10416:2002, American Petroleum Institute, 

2004, 34-38.

34. O’Brien D. E. and Chenevert M. E., “Stabilizing 

Sensitive Shale with Inhibited, Potassium 

Base Drilling Fluids,” Journal of Petroleum 

Technology, 1973, 25, 1089-1100.

35. Pessier R. C. and Fear M. J., “Quantifying 

Common Drilling Problems with Mechanical 

Specific Energy and a Bit-specific Coefficient 

of Sliding Friction,” SPE 24584, SPE Annual 

Technical Conference and Exhibition, 

Washington D. C., 1992.

36. Pinckard M. D., “Method of and System for 

Optimizing Rate of Penetration in Drilling 

Operations,” USA Patent 6192998, Noble 

Drilling Services Inc., 2001.

37. Roy S. and Cooper G. A., “Prevention of Bit 

Balling in Shale: Some Preliminary Results,” 

IADC/SPE 23870, IADC/SPE Drilling Conference, 

New Orleans, LA., 1992.

38. Salzberg S. L., “On Comparing Classifiers: Pitfalls 

to Avoid and a Recommended Approach,” Data 

Mining Knowledge Discovery Journal, 1997, 1, 

317-327.

39. Smith J. R., “Performance Analysis of Deep 

PDC Bits Runs in Water-Base Muds,” ETCE 

2000, ASME - Drilling Technology Symposium,” 

Houston, Texas, 2000.

40. Smith J. R., “Diagnosis of Poor PDC Bit 

Performance in Deep Shales,” Dissertation, 

Louisiana State University, 1998, 1-103.

41. Smith J. R., “Drilling Over-Pressured Shales 

with PDC Bits: A Study of Rock Characteristics 

and Field Experience Offshore Texas,” PhD 

Thesis, Louisiana State University, 1995. 

42. Smith J. R. and Lund J. B., “Single Cutter Tests 

Demonstrate Cause of Poor PDC Bit Performance 

in Deep Shales,” ETCE 2000, ASME -Drilling 

Technology Symposium, Houston, Texas, 2000. 

43. Smith J. R., “Addressing the Problem of PDC Bit 

Performance in Deep Shales,” IADC/SPE 47814, 

IADC/SPE Asia Pacific Drilling Conference, 

Jakarta, Indonesia, 1998.

44. Smith L., Mody F. K., Hale A., and Romslo N., 

“Successful Field Application of An Electro 

Negative ‘Coating’ to Reduce Bit Balling 

Tendencies in Water Base Mud,” IADC/SPE 

35110, IADC/SPE Drilling Conference, New 

Orleans, LA., March, 1996.  

45. Suykens J. A. K. and Vandewalle J., “Least 

Squares Support Vector Machine Classifiers,” 

Neural Processing Letter, 1999, 9, 293-300. 

46. Van Oort E., Friedheim J. E., and Toups B., 

“Drilling Faster with Water-Base Muds,” AADE, 

AADE Annual Technical Forum-Improvements 

in Drilling Fluids Technology, Houston, Texas, 

1999.

47. Van Oort E., “On the Physical and Chemical 

Stability of Shales,” Journal of Petroleum 

Society Engineers, 2003, 38, 213- 235.

48. Vapnik V. N., “The Nature of Statistical Learning 



A. Sameni and A. Chamkalani
Journal of Petroleum
Science and Technology

Journal of Petroleum Science and Technology 2018, 8(1), 03-16
© 2018 Research Institute of Petroleum Industry (RIPI)
  16

http://jpst.ripi.ir

Theory,” (2nd ed.), New York, Springer-Verlag, 

1995, 1-279. 

49. Vapnik V. and Lerner A., “Pattern Recognition 

Using Generalized Portrait Method,” Automation 

Remote Control, 1963, 24, 774-780. 

50. Warren T. M. and Sinor L. A., “PDC Bits: What’s 

Needed to Meet Tomorrow’s Challenge,” 

University of Tulsa, Centennial Petroleum 

Engineering Symposium, Tulsa, Oklahoma, SPE 

27978, 1994.

51. Warren T. M. and Armagost W. K., “Laboratory 

Drilling Performance of PDC Bits,” SPE 

15617, 61st Annual Technical Conference and 

Exhibition of Society of Petroleum Engineers, 

New Orleans, LA., 1986.  

52. Waxman M. H. and Smits L. J. M., “Electrical 

Conductivities in Oil Bearing Shaly Sands,” 

Journal of Society of Petroleum Engineers, 

1968, 8, 107-122, .

53. Xavier S. S., Suykens J. A. K., Vandewalle J., 

and Bolle D., “Coupled Simulated Annealing,” 

IEEE Transaction on Systems Management 

Cybernetics B Cybernetics, 2010, 40, 320-335.

54. Yang B. S., Hwang W. W., Kim D. J., and Tan 

A. C., “Condition Classification of Small 

Reciprocating Compressor for Refrigerators 

Using Artificial Neural Networks and Support 

Vector Machines,” Mechanical Systems and 

Signal Processing, 2005, 19, 371-390.

55. Yao X. J., Panaye A., Doucet J. P., Chen H. F.,  

and et al., “Comparative Classification Study 

of Toxicity Mechanisms Using Support Vector 

Machines and Radial Basis Function Neural 

Networks,” Anal. Chim. Acta. Computer Tech. 

Optimization., 2005, 535, 259-273.

56. Zijsling D. H. and Illerhaus R., “Eggbeater PDC 

Drill-Bit Design Concept Eliminates Balling in 

Water-Base,” Society of Petroleum Engineers, 

1991, 11-14.

57. Zuo R. and Carranza E. J. M., “Support 

Vector Machine: A Tool for Mapping Mineral 

Prospectivity,” Computation and Geoscience, 

2011, 37, 1967-1975. 

58. Waxman M. N. and Thomas C. E., “Electrical 

Conductivities in Oil-bearing Shaly Sand, The 

Relation between Hydrocarbon Saturation and 

Resistivity Index,” The tem- perature coefficient 

of electrical conductivity: Society of Petroleum 

Engineers Journal, 1974, 14, 213−225.


