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ABSTRACT
For some of the EOS models the dimension of equilibrium problem can be reduced. Stability and difficulties 

in implementation are among the problems of flash calculation. In this work, a new reduction technique 

is presented to prepare a reduced number of equilibrium equations. Afterwards, a number of appropriate 

solution variables are selected for the prepared equation system to solve the equations in an efficient 

numerical scheme. All the derivatives and solution procedures for the new reduced flash calculation 

framework were prepared based on Peng-Robinson equation of state. One reservoir oil sample and one 

gas condensate sample were selected from published literature to evaluate the proposed method for 

the calculations of reservoir fluids equilibrium. The equilibrium calculations with the proposed reduction 

technique were compared to full flash calculations. The reduced formulation implementation is simple 

and straightforward as it is derived from full flash fugacity equality criteria. The presented technique not 

only reduces the number of equations, and hence simplifies flash problem, but also presents a comparable 

convergence behavior and offers the same solution system for different reservoir fluid types. The results, 

demonstrates the proposed method performance and the accuracy for modeling with complex equilibrium 

calculations like compositional reservoir simulation when there are many components available in the 

mixture fluid description. 

Keywords: Reduction, Flash calculation, Reservoir Fluids, Peng-Robinson, Cubic Equation of States 

Mahdi Assareh*  

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, 
Tehran, Iran

Reduction of Reservoir Fluid Equilibrium Calculation for Peng-Robinson 
EOS with Zero Interaction Coefficients

*Corresponding author
    Mahdi Assareh
    Email: assarehm@iust.ac.ir   
    Tel: +98 2177243025
    Fax: +98 2177243025

Article history
    Received: July 29,2015
    Received in revised form: December 14, 2015    
    Accepted: January 12, 2016
    Available online: Jun 20, 2017

Journal of Petroleum 
Science and Technology

INTRODUCTION
Stability analysis and equilibrium calculations are 

repeated several times for many reservoir simulation 

cells for the field studies with compositional reservoir 

simulation using equations of state (EOS). It is shown 

that that equilibrium calculation is an important part of 

the CPU time, depending discretization, non-linearity, 

process complexity and degree of implicitness [1].

For EOS models, the dimensionality of equilibrium 

problem can be reduced. Originally reduction 

techniques were introduced for the mixtures in 

which all the binary interaction coefficients are zero. 

Michelsen (1986) found that the dimensionality of the 

flash calculation by cubic EOS with zero interaction 

coefficients is three [2]. He explained that zero 

binary interaction coefficients permit very significant 

simplifications in the calculation of phase equilibrium 

for multicomponent mixtures, in particular when the
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number of components is high. He proposed to 

solve three equations with three unknowns to 

find the equilibrium ratios. This means that the 

dimensionality of the two phase flash problem is 

independent of the number of components for cubic 

EOS. He mentioned that each component having 

non-zero interaction coefficients with the other 

components introduces two new equations in case 

that the added binary interaction coefficient (BIC) is 

between two components other than previous BIC’s 

component. Two BIC’s with one common component 

add 3 more equations. Michelsen selected three 

errors (equations) to solve for final equilibrium 

composition for each phase. In Michelsen method, 

an initial estimation of the reduced flash variables 

is used to start calculations. Assuming zero binary 

interaction coefficients, nv (the number of moles 

in vapor phase), av and bv are selected as variables 

(ζ=[nv ,av, bv]
T):

av=∑i=1
nc  ∑j=1

nc  yi yj (aj ai)
1/2=(∑i=1

nc  yj (aj)
1/2)2=(αv)

2        (1)

bv =∑1
nc yj bj                                                                                                                 (2)

The liquid phase parameters can be calculated based 

on vapor phase parameters and feed parameters:

αl=(αf- nvαv)/(1-nv)                                                      (3)

bl=(bf- nvbv)/(1-nv)                                                      (4)

Michelsen selected three errors (following 

equations) to solve for final equilibrium composition 

of each phase (g=[g1, g2, g3]
T):

g1=∑1
nc(uj

l-uj
v)                                                                  (5)

g2=∑1
nc uj

v αiv- αv                                                                                                    (6)

g3=∑1
nc uj

v biv- bv                                                              (7)

In Michelsen method, an initial estimation of 

reduced flash variables is used to start calculations. 

Based on these variables and with the help of 

Equations 3 and 4, the fugacity coefficients are 

calculated to update liquid and vapor composition, 

namely uj
v and uj

l. The new compositions are used to 

solve the reduced equations. The reduced variables 

are updated after solution and this cycle is repeated 

until convergence is obtained. However, for gas 

condensate systems, it is recommended that the 

corresponding variables be selected for the liquid 

phase. This recommendation comes from different 

sets of equations and different variables selection. It 

should be emphasized that all of these equations are 

in fact different versions of the equality of chemical 

potential equations; therefore, if it is possible to 

have an analytical solution for the flash calculation 

problem, the solution must then be the same. But 

since the flash calculation problems are solved 

numerically, the selection of the equations and 

solution variables and numerical scheme for it can 

affect the final calculation results. Based on these 

variables, the fugacity coefficients are calculated to 

update liquid and vapor composition. 

Jensen and Fredenslund (1987) extended the 

Michelsen method for the situations where one 

non-zero interaction coefficient exists in the mixture 

by solving a system of only five equations [3]. They 

assumed one BIC for non-hydrocarbon– hydrocarbon 

interactions. As previously discussed, the non-zero 

BIC brings two equations in addition to 3 existing 

equations. This procedure is advantageous for CO2 

and nitrogen flooding in the reservoirs. To solve the 

equations, they selected five variables. 

The variables in the flash problem are vapor mole 

fraction, nv, and first component (non-hydrocarbon 

component) mole fraction as well as:

alv=∑2
nc yj aj

1/2                                                                  (8)

dlv=∑2
nc yj aj

1/2 Kij                                                             (9)

glv=∑2
nc yj bj                                                                                                                  (10)
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With these variables, the attraction and repulsion 

terms for gas phase can be calculated as:

av=x1
2 a1

 + 2x1a1
1/2 (alv-dlv)+ alv

2                                (11)

bv=x1 b1 + glv                                                                   (12)

In this relations, x1 and y1 are the mole fraction of the 

first component (non-hydrocarbon component). The 

following equations are used to calculate corresponding 

parameters for liquid phase:

all=(alf- nvalv)/(1- nv)                                                                (13)

dll=(dlf- nvdlv)/(1-nv)                                                    (14)

gll=(glf- nvglv)/(1-nv)                                                  (15)

x1=(z1- y1 nv)/(1-nv)                                                   (16)

where, alv, dlv, glv, y1, and nv are taken as the 

solution variables (ζ=[nv,alv,dlv,glv,y1]
T). An initial 

guess is used to start reduced flash procedure. 

The corresponding liquid phase parameters are 

computed according to Equations 13-16. Afterwards, 

the liquid and vapor compositions are calculated with 

fugacity equations using above variables. Jensen and 

Fredenslund used the following set of equations to be 

solved for the five variables (g=[g1, g2, g3, g4, g5]
T):

g1= ∑2
nc uj  aj

1/2- alv                                                    (17)

g2= ∑2
nc uj aj

1/2 K1i- dlv                                                (18)

g3= ∑2
nc uj bj- glv                                                          (19)

g4= u1- y1                                                                     (20)

g5= ∑j=1
N uj - yj                                                             (21)

The updated five variables after equation solution 

are then used to calculate the liquid and gas 

composition and the loop is repeated until the 

convergence. Therefore, again one of the drawbacks 

of Jessen and Fredenslund method is the different 

sets of equations relative to full equilibrium 

equations. This causes different solution behaviors 

for different thermodynamic conditions and reservoir 

fluid types relative to full flash approach as it is 

described in Michelsen technique.

Hendriks (1988) presented a general mathematical 

theorem in phase equilibrium equations to show how 

for a well-defined class of thermodynamic models 

(e.g. cubic EOS) the dimensionality of various phase 

equilibrium problems can be reduced [4]. 

Li and Johns developed an effective method for 

reduced flash calculation in cases that non-zero 

interaction coefficients are existing in the fluid 

description [5]. They presented a new method to 

increase the speed of flash calculations for any 

numbers of nonzero BIP’s. The approach requires the 

solution of up to six reduced parameters regardless 

of the number of components and is based on 

decomposing the BIP’s into two parameters using 

a simple quadratic expression. The new approach 

is exact in that the equilibrium-phase compositions 

for the same BIP’s are identical to those with the 

conventional flash calculation; no eigenvalue analysis 

is required. However, the calculated equilibrium ratios 

are estimations of full flash equilibrium ratios. The 

drawback of such approach is that the equilibrium 

ratios are the estimation of full flash equilibrium ratio.

Different applications of the reduction methods have 

been investigated by Nichita et al. to prove their 

exactness for a wide range of equilibrium calculation 

problems such as stability analysis, saturation 

pressure, extrapolation of the results of previously 

performed flashes with different application from 

synthetic hydrocarbon to real petroleum reservoir 

mixtures, and multiphase flash calculations [6]. 

Hoteit and Firoozabadi (2006) presented an algorithm 

for the stability analysis in the reduction method. 

In their technique, the Newton method is used in 

the solution of nonlinear equations except in some 

isolated iterations when one single successive 
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substitution iteration may be required to avoid 

nonphysical conditions [7]. 

Nichita and Graciaa (2011) developed a general 

workflow for flash calculation with reduction 

techniques for cubic EOS in cases that there are 

more than one non-zero interaction coefficients 

[8]. Also, comparisons of the proposed numerical 

schemes for reduction techniques are available in 

the literature [9].

They described that, in a classical reduction method 

for phase equilibrium calculations, there are M 

reduction parameters, Qp=(Qp1,Qp2,…,Q_pM)T:

Qp= ∑i=1
nc qαi xip, α =1, M, p=L or V                            (22)

The M+1 error equations are given by:

eα= ∑i=1
nc qαi xip- Qpα, α=1, M, p=L  or V                       (23)

eM+1= ∑i=1
nc (yi- xi) = 0                                                     (24)

choice between these two is made depending on 

which phase is the least abundant.

Gaganis et al. (2012) presented a general framework 

for developing solutions to Rachford-Rice equation 

utilizing function classes, the members of which 

exhibit a behavior similar to that of the equation to 

be solved. Fitting such functions, instead of a simple 

straight line at each iteration of the solution process, 

as is the case of the Newton–Raphson approach, leads 

to better subsequent estimates and thus to faster 

convergence [10]. In this approach, the calculated 

equilibrium ratios with the reduced technique are the 

estimation of full flash equilibrium ratios.

Gaganis and Varotsis (2013) replaced the conventional 

spectral decomposition [8] using basis vectors by new 

ones so that the approximation error of the energy 

parameter is minimized. The new reduced variables set 

leads to improved flash calculations accuracy, thereby 

allowing them to be performed at a given accuracy 

level using fewer reduced variables compared to the 

conventional approach [11]. 

Gorucu and Johns (2014) presented new reduced 

parameters using the two-parameter binary 

interaction parameter formula originally proposed 

by Li and Johns (2006) [12]. The new reduced 

parameters were employed to solve two-phase 

flash calculations for five different fluid descriptions.

Later on, an applied phase-related equilibrium 

(APPLE) solver using only the Peng–Robinson 

equation of state was developed based on rigorous 

classical thermodynamics [13] with a theoretically 

and thermodynamically consistent solver with the 

stringent equilibrium criterion.

Gaganis and Varotsis (2014) presented an integrated 

approach to provide direct answers to both the 

phase stability and phase split problems during 

compositional modeling using a regression approach. 

The non-linear transformation of the equilibrium 

equations is combined to explicit expressions, which 

are generated to provide directly the solution of the 

phase-split problem within the reduced variables. 

Regression models are developed so as to estimate 

pressure and temperature to the prevailing values 

of the reduced variables set with a direct function 

relating feed composition [14].

Petitfrere and Nichita (2015) provided an improvement 

of two-phase reduced flash calculations [15] to 

multiphase equilibrium calculation with any number 

of phases. They proposed their algorithms with two 

approaches, a direct extension of the reduction 

for two-phase flashes and a Gibbs free energy 

constrained minimization. They examined their 

proposed algorithms for several multiphase systems 

containing hydrocarbon components, carbon dioxide, 

and hydrogen sulfide. Numerical experiments showed 

that the reduction methods for multiphase flash 

calculations become faster than the conventional 

methods when the number of components increases, 
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when the number of equilibrium phases increases, 

and when the number of BIC decreases. They claimed 

that for samples with many components and few BIC’s, 

their method can improve the equilibrium calculation 

performance [16].

Petitfrere and Nichita (2015) evaluated stability 

testing and flash calculations separately. It is shown 

that reduction methods are more efficient than 

conventional techniques, so they are suitable for 

compositional simulation. This is beneficial specially 

because, in most of the reservoir simulators, no 

explicit phase split is required and equilibrium 

calculations are parts of a larger problem (coupled 

with flow equations), while phase stability analysis 

must be performed in most grid blocks [17].

The non-linear nature of phase equilibrium 

calculations requires an iterative solution procedure. 

Stability and difficulties in implementation are among 

the problems with flash calculation reduction [18].

In this work, a new reduction technique is presented. 

In this respect, a reduced number of equilibrium 

equations was prepared. Afterwards, appropriate 

solution variables are selected for the prepared 

equations system to solve the equations in an efficient 

numerical scheme. All the derivatives and solution 

procedures for the new reduced flash calculation 

framework were prepared based on Peng-Robinson 

equation of state. The proposed approach has two 

advantages over conventional reduction technique. 

The first is the unique set of equations and variables for 

different types of the reservoir fluids. Secondly, having 

the same equations and the same variables ensures 

that the convergence behavior of the reduced flash 

numerical scheme is the same as full flash scheme, 

and there is no need to change the equation systems 

and solution variables. Besides, the numerical scheme 

thresholds can be provided directly from the full flash 

approach. The other advantage of the reduction 

technique is that the formulations are just extracted 

from the full flash algorithms; therefore, there is no 

considerable difficulties regarding implementation.

Reservoir Fluid Samples
Three main hydrocarbon groups, namely paraffins, 

naphthenes, and aromatics, are usually available 

in any petroleum reservoir fluid mixtures. Paraffins 

are divided into two groups of normal-paraffins and 

iso-paraffins. Naphthenes or cycloalkanes are rings 

or cyclic saturated hydrocarbons. Cyclo-pentane, 

cyclohexane, and their derivatives are normally 

found in crude oils. The content of naphthenes in 

petroleum may vary up to 60% [19]. Aromatics 

are an important series of hydrocarbons found in 

almost every petroleum mixture from any area of 

the world. Usually a sample of petroleum fluid is 

characterized as discrete components, petroleum 

cuts, and a plus fraction. Each fraction contains 

paraffinic, naphthenic, and aromatic components. 

Usually the fractions molecular weight, specific 

gravity, and normal boiling point are measured and 

reported. Specific gravity (S) and molecular weight 

(MW) are useful parameters for the characterization 

of petroleum fluids to determine PNA composition 

and also to estimate other properties such as critical 

constants, density at various temperatures, viscosity 

etc. In this work, the new reduction technique on 

equilibrium calculations is examined for two samples 

of reservoir fluid. Sample 1 (S1) is an oil reservoir 

fluid characterized with 24 components. Samples 

S1 data were taken from published data [20]. The 

sample characterization data are presented in 

Table 1. The data for sample 2 is obtained from 

North Sea gas condensate by ‎Leibovici et al. (1993) 

including 27 components [6]. The characterization 

data are reported in Table 2 for this sample
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Table 1: S1, Fluid Characterization

Components ZI 
(percent) MW PC (bar) TC (K) AF VC (m

3/kg.mol)

N2 0.1800 28.0130 33.9440 126.2000 0.0400 0.0900

CO2 0.8200 44.0100 73.8660 304.7000 0.2250 0.0940

C1 22.9200 16.0430 46.0420 190.6000 0.0130 0.0980

C2 7.2100 30.0700 48.8390 305.4300 0.0986 0.1480

C3 7.3700 44.0970 42.4550 369.8000 0.1524 0.2000

IC4 1.5800 58.1240 36.4770 408.1000 0.1848 0.2630

nC4 5.2300 58.1240 37.9660 425.2000 0.2010 0.2550

IC5 2.2500 72.1510 33.8930 460.4000 0.2270 0.3080

nC5 3.6000 72.1510 33.7010 469.6000 0.2510 0.3110

C6 4.8400 86.0000 31.7970 500.4300 0.2675 0.3551

C7 4.7200 92.0000 31.8080 523.8600 0.2913 0.3721

C8 4.5200 102.0000 30.4830 552.2700 0.3254 0.4068

C9 4.0700 117.0000 28.1190 586.8300 0.3752 0.4623

C10 3.5000 134.0000 25.5580 619.6700 0.4315 0.5271

C11 2.9100 151.0000 22.7690 642.7500 0.4898 0.5977

C12 2.4200 165.0000 21.0210 662.6900 0.5370 0.6539

C13 1.9900 178.0000 19.6780 681.2900 0.5801 0.7050

C14 1.7400 194.0000 18.2980 704.1200 0.6323 0.7666

C15 2.0200 208.0000 17.4260 726.2000 0.6757 0.8174

C16 1.3900 225.0000 15.9750 743.9100 0.7322 0.8871

C17 1.2100 239.0000 14.9500 758.4800 0.7780 0.9439

C18 0.9000 249.0000 14.3960 770.6900 0.8092 0.9820

C19 1.1700 270.0000 13.2320 793.3500 0.8754 1.0643

C20+ 11.4400 560.0000 4.9241 1021.2000 1.5499 2.2181
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Table 2: S2 fluid characterization

Components ZI (percent) TC (K) PC (Bar) AF MW

N2 0.3243 126.2000 33.9400 0.0400 28.0100

CO2 1.9549 304.2000 73.7700 0.2250 44.0100

C1 76.1530 190.6000 46.0000 0.0115 16.0400

C2 7.7367 305.4000 48.8400 0.0908 30.0700

C3 3.6177 369.8000 42.4500 0.1454 44.1000

iC4 0.5667 408.1000 36.4800 0.1760 58.1200

nC4 1.3258 425.2000 38.0000 0.1928 58.1200

iC5 0.4480 460.2600 33.8300 0.2271 72.1500

nC5 0.6100 469.6000 33.7400 0.2273 72.1500

CC5 0.0580 511.6000 45.0900 0.1923 70.1400

PC6 0.6001 503.7900 30.0700 0.2860 86.1800

CC6 0.4148 547.4100 39.9000 0.2215 84.1600

AC6 0.1735 562.1000 48.9400 0.2100 78.1100

PC7 0.4239 536.4400 27.6000 0.3364 100.2100

CC7 0.5056 566.2700 34.6900 0.2451 98.1900

AC7 0.3063 591.7000 41.1400 0.2566 92.1400

PC8 0.3291 565.0500 25.0200 0.3816 114.2300

CC8 0.2540 594.0500 29.7400 0.2391 112.2100

AC8 0.2564 619.4600 35.8400 0.3228 106.1600

PC9 0.2630 590.6400 23.2900 0.4230 128.2500

CC9 0.1640 621.2100 28.3900 0.2998 125.9700

AC9 0.1217 644.0600 32.0800 0.3725 120.1600

PC10 0.2411 613.7200 21.4600 0.4646 142.2800

CC10 0.0427 621.5800 26.2500 0.4058 140.2000

AC10 0.1049 670.8300 29.7200 0.3642 133.8000

CN-1 2.6703 711.0400 18.7500 0.8000 240.0000

CN-2 0.3338 848.0800 16.3300 1.3000 450.2600
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Reduction Technique
For a two phase flash calculation problem, the 

following system of nonlinear equations is solved:

( ) ( )ϕ ϕ= + − = = …ln ln , , ln , , 0   1, ,v l
i i i i fg K y P T x P T i n  (25)

where, φi denotes the fugacity coefficient of 

component i calculated using EOS. To calculate the 

fugacity coefficients for each phase p, one should 

recall PR EOS. If we define the following constants:

= − = − = +1 2 32 2  ,   1 2,   1 2p p p                           (26)

Compressibility factor is calculated based on PR 

EOS as for each phase p:

                                                                                                                     
                                                                                    (27)

In this cubic equation of state, capital EOS parameters, 

Ap and Bp) are calculated according to small EOS 

parameters, ap and bp:

= 2( )
p

p

a
A

RT
,                                                               (28)

The small EOS parameters are resulted from VdW 

mixing rules, if the binary interaction coefficients 

are zero

= =

=∑∑
1 1

nf nf

p pi pj i j
i j

a x x a a ,                                          (29)

If binary interaction coefficients are not zero, the 

outcome of the reduced flash problem can be used as 

an initial estimate of the full flash problem. This makes 

advantages when we are dealing with near critical fluid 

with lots of components in the mixture. Moreover, 

usually the petroleum reservoir fluids contain non-

well-defined fractions and plus fractions. The critical 

and thermos-physical properties of such fractions 

are estimated through correlations and readjusted 

through tuning procedures. That is why there are 

cases in which the petroleum engineers prefer to 

tune these estimated properties instead of binary 

interaction coefficients to match saturation pressure 

and PVT experiments. The fugacity coefficients for 

phase p for each component are given by:

− − + − −

− − − =

3 2 2

2 3

(1 ) ( 2 3 )

( ) 0
P P P P P P P

P P P P

Z B Z A B B Z

B A B B

= 2( )
p

p

b
B

RT

=

=∑
1

nf

p pi i
i

b x b

                                                                                   (30)

in which,

=

=∑ 0.5

1

nc
p p

j j
j

s x a                                                         (31)

The fugacity coefficients for each phase can be 
decomposed into three parts:

ϕ = + + 0.5
1 2 3/p p p

i i iLn A p A b bmix A a                     (32)

The coefficients, required for each component, are:
                                                                                      (33)( )= − −1

p p pA Ln Z B

( )−  +
= +  + 

2
2

1 3

1
.( )

p p pp
p

p p p p p

Z Z B pAA bmix Ln
b B b p Z B p                                                                                

   (34)

   +
= −    +   

2
3

1 3

2 p pp p
p

p p p p

Z B pA sA Ln
B p a Z B p

 

                                                                                   (35)

In this relation, bmix has a fixed value and calculated 
based on feed mole fractions:

1

NC

i i
i

bmix z b
=

=∑                                                                                    (36)

(This constant factor is added so that the magnitude 

of A1
p, A2

p, and A3
p changes to the same order 

required for future calculation. By defining the below 

equations, one can easily calculate the equilibrium 

ratios (Equation 40):

1 1 1ζ = −L VA A                                                         (37)

                                                                                    (38)

                                                                                    (39)

                                                                                   (40)0.5
1 2 3ln . .ζ ζ ζ= + +i

i i
bK a

bmix

This equation provides the framework for the reduction 

technique. The liquid and vapor compositions are 

changing in each non-linear iteration of flash problem. 

Therefore, in each iteration, ζ1, ζ2, and ζ3 are updated, 

and consequently the equilibrium ratios are updated; at 

the end of flash calculation, there is no more change in 

equilibrium ratios and in these parameters. Generally, in 

conventional flash calculation algorithms, the K-values in 

each iteration are updated with the following relation:

3 3 3ζ = −L VA A

( ) ( )
2

1 3

1

2 .

p p p pi
i p

p pp p
i

p p p p p

bLn Z Ln Z B
b

b Z B pA s Ln
B P a b Z B p

= − − − −

   +
−    +   

ϕ

2 2 2ζ = −L VA A
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                                                                                    (41)

where, ln
∂

∂
i

j

g
K  can be calculated as:

( ) ( )
( )

( )
( )

ln , , 1
ln 1

ln , ,
1

φ
δ

φ

 ∂ −∂
= + + 

∂ ∂ − +  
 ∂
 

∂ − +  

i vi
ij j

j j v v j

i v
j

j v v j

y P T ng K
K y n n K

x P T nK
x n n K (42)

in which, δij is defined as:

                                                                                    (43)
0    
1   

δ
≠

=  =
ij

i j
i j

Figure 1: Flowchart of the full flash as a basis for reduced flash.
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Figure 2: Flowchart of the reduced flash.

For which, the required derivatives are derived in the 

appendix. It should be noted that the equilibrium 

equations and Rachford-Rice equation can be solved 

sequentially. This means that with a set of updated 

equilibrium ratios, the Rachford-Rice equation is 

solved, and the resulting mole numbers of vapor 

of the next set of equilibrium ratios are calculated. 

In this way, nv= 1-nl can be regarded independent 

of equilibrium ratio in the internal loop for K-value 

updating. The work flow for the full flash calculation 

is presented in Figure 1.

The Rachford-Rice equation, a nonlinear equation, 

is solved for the molar fraction of each phases using 

Newton-Raphson method:

(44)

This equation is solved in an external loop. The 

solution to flash calculation problem is started with 

pressure, temperature, and feed composition. The 

initial estimate of K-Values is provided from Wilson 

correlation. The Rachford-Rice equation is solved 

iteratively until the mole number of vapor phase 

does not change anymore. With this in hand, the 

full set of equilibrium equations, as formulated in 

Equation 25, is solved based on a Newton approach 

for a set of non-linear solution using Equation 41. In 

the updating step, the difference in K-values is simply 

added to the K-values of the previous step. It should 

be mentioned that to update the mole number of 

vapor phase, there is no need to completely solve 

the Rachford-Rice in each iteration. One can use the 

following relation (with no need to iterate):
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                                                                                   (45)

where, f(nv) and f ́(nv) are calculated using 

Equations 44. Now if one considers Equation 40, 

all the equilibrium constants are functions of ζ1, 

ζ2, and ζ3. ζ1, ζ2, and ζ3 are the same for all of the 

mixture components. Therefore, one can set up 

the following set of variables:

                                                                                    (46)

In fact, if one could find the above vector, the 

K-values can be exactly calculated. Consequently, 

if there is no non-zero interaction coefficient, the 

problem dimensionality is 3. The proper reduced 

equilibrium equations to be solved for the reduced 

flash calculation are defined as:

( ) ( ) ( )IK 1 2 3, , T
r IK IK nr

g g g g =  
                                          (47)

where, IK returns the serial number of related 

equilibrium equation according to Equation 25. For 

components with zero interaction coefficients, the 

first three equations can be selected from three 

optional components. The solution of the reduced 

system is:

                                                                                    (48)

To solve the reduced equation with the reduced 

number of variables, one needs to have the below 

relation for Jacobian calculation (Jnr*nr is extracted 

from Jnf*nr): 

                                                                                    (49)

where,[ ] .
/

nf nf
g Lnk∂ ∂ is calculated from Equation 

41. The second part of the calculation of these 

derivative,[ ] .
/

nf nr
Lnk ζ∂ ∂ ,is in fact constant during 

flash iteration and is defined as the following 

relation:
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The initial estimate of K-Values and the mole number 

of vapor phase are calculated based on Wilson and 

Rachford-Rice equation correspondingly. These 

values are then used as the basis for the initial 

estimation of the reduced variables. Afterwards, 

the reduced equation system in Equation 48 is 

solved to calculate the new reduced variables. 

These reduced set of variables are used to update 

the new full set of equilibrium ratio. The schematic 

diagram is shown in the Figure 2.
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Figure 3: Convergence behavior of full flash calculation 
and the reduced technique for cumulative absolute 
residual (CAR); S1; P=50 bar; T= 550 K.

Figure 4: Variable changes during Newton-Raphson 
iteration; S1; P=50 bar; T= 550 K.
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Figure 5: Variable changes during Newton-Raphson 
iteration; S1; P=45 bar; T=900 K.

The reduced variable changes during the Newton 

iterations are plotted in Figure 4. It shows that nearly 

after four or five nonlinear iterations, the reduced 

variables become very close to their final values. The 

same results but at a temperature of 900 K, where 

we have a little amount of oil, are plotted in Figure 5.

The equilibrium ratios of the reduced approach are 

essentially the same as those shown in Figure 6. 

Figure 6: Equilibrium ratio comparison for the reduced 
and full flash calculation; S1; P= 50 bar; T= 550 K.

For the gas condensate sample, the equilibrium 

calculations at several pressures and temperatures 

inside the two phase region were performed. The 

convergence results are presented at 200 bar and 

350 K. The decrease in the cumulative absolute 

residual during iterations in the full and reduced 

flash is plotted in Figure 7. The similar convergence 

behavior for both approaches is deduced from this 

figure. As it is expected for the gas condensate 

sample, the program needs a higher number of 

iterations to satisfy the equality of the fugacity 

coefficients in equilibrium. The changes in reduced 

variable during the Newton iterations in the 

conditions of 200 bar/350 K and 100 bar/300 K, where 

we have two completely different mole numbers 

of vapor phase, are plotted in Figure 8 and Figure 9 

correspondingly. Here again, in both figures, the reduced 

variables become very close to their final values in less 

than five iterations.

RESULTS AND DISCUSSION
To evaluate the proposed solution technique, two 

real reservoir samples, namely S1 and S2, were 

used. The initial equilibrium ratios were calculated 

with Wilson correlation. 

                                                                                   (53)

Using these equilibrium ratios, the initial estimate 

of the reduced variable is calculated and the 

reduction flash calculation starts the mentioned 

numerical scheme. The convergence criteria for 

both flash types, i.e. the full flash and reduced 

calculations, are calculated based on:

( ) ( ) 6

1

ln ln , , ln , , 10
nf

v l
i i iK y P T x P Tϕ ϕ −+ − <∑    (54)

which is the cumulative absolute residual (CAR) 

and ensures the equality for the components in oil 

and gas phase due to the equilibrium conditions.

The oil sample equilibrium reduction was tested 

in several pressures and temperatures inside a 

two phase region. At a pressure of 50 bar and a 

temperature of 550 K, the reduction results are 

presented. Figure 3 shows the close convergence 

behavior of the reduced and full flash approach. 

Both algorithms started from the same cumulative 

absolute residual due to the same initial estimates 

from Wilson equation.
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The calculated reduced equilibrium ratios are plotted 

versus the full flash equilibrium ratios in Figure 10

Figure 7: Convergence behavior of full flash calculation 
and reduced technique for cumulative absolute 
residual (CAR); S2; P= 200 bar and T= 350 K.

Figure 8: Variable changes during Newton-Raphson 
iteration; S2; P= 200 bar; T= 350 K.

Figure 9: Variable changes during Newton-Raphson 
iteration; S2; P= 100 bar; T=300 K.

Figure 10: Equilibrium ratio comparison for the reduced 
and full flash calculation; S2; P=200 bar; T=350 K.

CONCLUSIONS
A new flash reduction technique is presented and 

verified against the full flash procedure. The proposed 

approach offers a unique set of equations and 

variables to reduce the dimension of the equilibrium 

calculation problem. In this method, the selection 

of the solution variables and reduced equations 

extend the stability and convergence of the proposed 

technique to support different reservoir fluid types 

and thermodynamic conditions. To demonstrate 

these capabilities, two real samples of reservoir 

fluid were selected from reliable published data. The 

convergence behaviors of the new reduction technique 

for both samples are close to the full flash calculations 

according to the performed numerical experiments. 

The calculated equilibrium ratios and phases mole 

fractions for the reduced set of equations are very 

close to the results calculated for the conventional 

approach. The approach implementation procedure 

is simple and straightforward. This means that 

with full set of equilibrium equations and their 

corresponding derivatives, the reduced equation and 

their derivatives with respect to solution variables can 

be obtained, and there is no considerable difficulty 

regarding implementation. The method development 

was based on the compressibility and fugacity 
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coefficients of Peng-Robinson equation of state; 

however, the approach is general and can be applied 

to any two-parameter cubic equation of state.

NOMENCLATURE
AAD%	 Average absolute deviation percent

A, B	 EOS capital attraction repulsion parameters

a, b	 EOS small attraction repulsion parameters 

AD%	 Absolute deviation percent

AF	 Acentric factor

CAR	 Cumulative absolute residual

EOS	 Equation of state

f	 Fugacity 

G	 Residual equation

K	 Equilibrium ratio

J	 Jacobian Matrix

MW	 Molecular weight

P	 Pressure

PC	 Critical pressure

T	 Temperature

TC	 Critical temperature

VC	 Critical Volume

Z	 Compressibility factor

nv	 Phase mole fraction

ζ 	 Solution variable

ω	 Acentric factor

xi
p	 Component mole fraction for phase p

xi,yi	 Phases mole fraction

iµ         Chemical potential

iφ          Fugacity coefficient
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APPENDIX
To calculate the required EOS derivatives for the 
full and reduced flash, the compressibility factor 
derivatives can be written as:

p p p p p

p p P p p
i i i

Z Z A Z B
x A x B x
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

                                (1)

The compressibility factor derivatives can be 

formulated as:

( )3 . 2 1 2 3 .
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      (3)

The derivative of compressibility factor for each 

phase with respect to capital EOS parameters for 

PR must be calculated implicitly:
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The capital EOS parameters derivatives with 

respect to phase composition are defined by:

                                                                                      (6)
 

                                                                               (7)

Using the above derivatives, the fugacity coefficient 

derivatives with respect to composition can be 

calculated as:
0.51 2
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                     (8)

In this relation each term is defined as following:
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