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 Abstract 

Miscible gas injection is one of the most effective enhanced oil recovery techniques and minimum miscibility 

pressure (MMP) is an important parameter in miscible gas injection processes. Accurate determination of this 

parameter is critical for an adequate design of injection equipments project investment prospect. The purpose of this 

paper is to develop a new universal artificial neural network (U-ANN) model to predict the minimum miscibility 

pressure of CO2 and hydrocarbon gas flooding. Different MMP correlations and models have been proposed 

regarding the type of injection gas and the mechanism of miscibility, respectively based on mathematical and 

thermodynamic calculations. Almost all the correlations proposed in the literature either represent condensing 

/vaporizing mechanisms or give reasonable results only in a limited range of data they are based on. A new model is 

introduced by taking into consideration both condensing and vaporizing mechanisms and by using a wider range of 

data. Experimental data from different crude oil reservoirs carried out by slim tube test have been applied in order to 

propose a new model. Mixing rules are used to decrease independent variables. The significance of this model is that 

MMP can be determined for any composition of oil and gas, no matter which mechanism is dominant in achieving 

miscibility.  Comparing the percentage error of this model to those of the previous literature data showed that the 

results obtained from the new MMP model are more accurate and universal than most common correlations 

available. 

Keywords: Minimum miscibility pressure (MMP), Gas injection, Neural network, Mixing rules, Critical property, 

Slim tube 

1. Introduction 

In recent years, much attention has been devoted to enhanced oil recovery. Enhanced oil recovery includes many 

techniques. Miscible gas injection is one of the most effective methods. An effective parameter in miscible gas 

injection process is minimum miscibility pressure (MMP). MMP is the minimum pressure at which the injected gas 

can attain dynamic miscibility with the reservoir oil [1-3]. The reservoir to which the process is applied ought to be 

operated at or above the MMP in order to develop multi contact miscibility. Reservoir pressures below the MMP are 

reported to cause immiscible displacements and consequently lower oil recoveries. A considerably high operating 

level of MMP may result in inflated process costs. On the other hand, if the predicted MMP is too low, the miscible 

displacement process may become useless, leading to a high possibility of the process malfunction. Thus, accurate 

estimation of MMP would bring significant economic benefits [4]. A number of methods have been suggested for 

measurement of the MMP. Slim tube displacement experiments are among the most frequently used experimental 

methods [5]. While experimental details are considerably various, the fundamental approach is to establish a nearly 

one-dimensional flow in which gas displaces oil with the outlet pressure held constant [6]. A series of displacements 

are performed at rising pressures, and the fraction of oil recovered (typically at 1.1 or 1.2 pore volumes of gas 

injection) is measured. The MMP is usually taken to be a pressure above which recovery exceeds some specified 

values (often 90%); however, different investigators have adopted different criteria to determine the MMP from 

measurements of recovery. 

The rising-bubble-apparatus (RBA) approach (developed in the early 1980s) is generally recognized as a capable 

method to determine gas–oil MMP [7]. Zho and Orr (1997) deduced that the rising bubble experiment is mainly a 

scrutiny of the effects of changes in interfacial tension (IFT) on bubble shapes as the components in the bubble 

dissolve in the oil and components in the oil transfer to the bubble [8]. They concluded that rising bubble 

experiments could be used to measure the MMP for vaporizing gas drives but are less accurate for condensing gas 

drives, while an experiment that makes use of a drop of oil falling through gas could be used for condensing gas 
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drives. An experimental method which determines the density of the injection gas rich upper phase in contact with 

stock tank oil as a function of pressure was described for measuring gas–oil MMP at low temperatures below 50 
o
C 

[9]. An alternative approach utilizes the pressure at which the pure solvent reaches liquid-like densities [10]. This is 

achieved by extrapolating the vapor pressure curve of the solvent. Rao and Lee (2002), and Orr and Jessen (2007) 

reported that straight measuring interfacial tension of an oil–solvent mixture at reservoir conditions could provide a 

quick means of determining MMP [6,11].Experimental methods for MMP measurements are very costly and time 

consuming; therefore development of a highly accurate approach for determination of natural gas– oil MMP is 

usually required. To facilitate screening procedures and to gain insight into the miscible displacement process, many 

correlations have been proposed relating the MMP to the physical properties of the oil and displacing gas. 

From the literature review, pure CO2–oil MMP correlations have been reported in Cronquist [12], Lee [13], Holm 

and Josendal [14], and Emera and Sarma [18]. On the other hand, impure CO2–oil MMP correlations have been 

reported in Kovarik [19], Alston et al. [15], Sebastian et al. [20], Eakin and Mitch [21], Dong [22], and Emera and 

Sarma [23]. In addition, pure or impure CO2–oil MMP correlations have been reported in Johnson and Pollin [24], 

Orr and Silva [25], Enick et al. [26], and Yuan et al. [27].However, the main concern with statistical techniques such 

as multiple linear and nonlinear regression techniques is the difficulties in satisfying many strict assumptions that are 

essential to justifying their applications, such as those of sample size, linearity, and continuity [17]. Therefore, 

nonlinear modeling techniques such as artificial neural networks are necessary for building a precise and reliable 

predictive model. Additionally, when artificial neural networks are used for prediction and forecasting, the 

underlying idea is similar to that used in traditional statistical approaches. In both cases, the unknown model 

parameters (i.e. the connection weights in the case of ANNs) are adjusted in order to obtain the best match between a 

historical set of model inputs and the corresponding outputs. Therefore, ANNs and statistical models are closely 

related. Consequently, the principles considered acceptable practices in the development of statistical models usually 

need careful attention. The main areas that should be addressed include data pre-processing, choice of adequate 

model inputs, choice of an appropriate network geometry, parameter estimation, and model validation.  

 

2. Problem definition 

Miscible gas flooding is widely employed for improving or enhancing oil recovery for many oil reservoirs. A key 

parameter used for assessing the applicability of the process for a reservoir is the minimum miscibility pressure. 

Therefore, accurate prediction of minimum miscibility pressure is of utmost importance. There are many components 

in oil and gas-injected compositions which all of them are directly effective in MMP and are considered as 

independent variables in the proposed model. This data exists in PVT test reports. An attempt was made in this study 

to investigate the application of a neural networks concept for prediction of MMP in a gas injection process and 

establish a proper relation between independent and dependent variables. Of course, artificial neural network was 

used before while some independent variables (not all variables) were applied directly. However, the outstanding 

feature of this study is coupling mixing rules to benefit from all variables properties and then applying artificial 

neural network to simulate slim tube apparatus accurately.  

3. Theoretical background 

A neural network is a powerful data modeling tool that is able to capture and represent complex input/output 

relationships. The motivation for the development of neural network technology stemmed from the desire to develop 

an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. Neural 

networks resemble the human brain in the following two ways: 

1. A neural network acquires knowledge through learning. 

2. A neural network's knowledge is stored within inter-neuron connection strengths known as synaptic weights.  

The true power and advantage of neural networks lies in their ability to represent both linear and non-linear 

relationships as well as to learn such relationships directly from the data being modeled. Traditional linear models 

are simply inadequate when it comes to modeling data that contains nonlinear characteristics. A neural network is a 

system of simple processing elements, called neurons, which are connected to a network by the architecture of the 

network, the magnitude of the weights and the processing element’s mode of operation. The neuron is a processing 

element that takes a number of inputs(p), weights them(w), sums them up, adds a bias (b) and uses the results as the 

argument for a singular valued function (f), which results in the neurons output (a) [29].  

 The knowledge of the neural network is encoded in the values of its weights. The task of determining the weights is 

called training and is basically a conventional estimation problem. For this purpose, the back propagation strategy 

has become the most frequently used method that tends to reasonable answers [17]. 



The training function in this work updates weight and bias values according to Levenberg-Marquardt back-

propagation optimization. Moreover, training occurs according to the function's training parameters.  

 

4. Implementation 

4.1 Mixing-rules method 

The direct application of mixing rules to the corresponding states principle (CSP) correlations to describe mixtures 

assumes that the behavior of a mixture in a reduced state is the same as some pure components in it. When the 

reducing parameters are critical properties and are made functions of composition, they are called pseudo critical 

properties because the values are not generally expected to be the same as the true mixture critical properties. Thus 

the assumption in applying corresponding states to mixtures is that the PVT behavior will be the same as that of a 

pure component whose Tc and Pc are equal to the pseudo-critical temperature, Tcm, and pseudo-critical pressure of the 

mixture, Pcm, and other CSP parameters such as acentric factor can also be made adequately composition-dependent 

for reliable estimation purposes. 

Thus, for the pseudo-critical temperature, Tcm, the simplest mixing rule is a mole fraction average method (Equation 

1). This rule, often called one of the Kay’s rules (Kay, 1936), can be satisfactory. 

 
For the pseudo-critical pressure, Pcm, a mole-fraction average of pure-component critical pressures is normally 

unsatisfactory. This is because the critical pressure for most systems goes through a maximum or minimum with 

composition. The only exceptions are when all components of the mixture have quite similar critical pressures and/or 

critical volumes. Equation 2 shows the simplest rule which can give acceptable Pcm values for two-parameter or 

three-parameter CSP is the modified rule of Prausnitz (1958) [31]. 

 

Where all the mixture pseudo-critical Zcm, Tcm, and Vcm are given by mole-fraction averages (Kay’s rule) and R is the 

universal gas constant. For three-parameter CSP, the mixture pseudo acentric factor is commonly given by a mole 

fraction average (Equation 3). 

 
While no empirical binary (or higher order) interaction parameters are included in equations (1) to (3), good results 

may be obtained when these simple pseudo-mixture parameters are used in corresponding-states calculations for 

determining mixture properties [31]. 

4.2. Factors affecting gas–oil MMP 

The key factors affecting gas–oil MMP are reservoir temperature, reservoir fluid composition, and composition of 

injected gas [3,4,15,18,20,24]. The reservoir temperature has a considerable effect on gas–oil MMP; as the 

temperature increases, the MMP increases and vice versa [16]. Rathmell, et al., (1971) stated that the existence of 

volatile components, such as methane in the crude oil leads to the increase of the gas–oil MMP, while the presence 

of intermediates C2 to C6 can reduce the gas–oil MMP [32]. Metcalfe and Yarborough (1974) argued that any gas–oil 

MMP correlation should take into account the presence of light ends and intermediates in the crude oil [33]. Alston, 

et al., (1985) in their experimental slim-tube tests showed that the oil recovery decreases at gas breakthrough and the 

resulting gas–oil MMP increases by improving the ratio between the amounts of volatiles to intermediates in the 

crude oil composition. In addition, Alston, et al. stated that molecular weight of C5
+
 is better for the correlation 

intention than the oil API gravity [15]. Also, Cronquist (1978) used the temperature and molecular weight of C5
+ 

as 

correlation parameters as well as the volatile mole percentage of C1 and N2 in the crude oil. In addition, the presence 

of non-CO2 components (e.g., C1, H2S, N2, or intermediate hydrocarbons components such as C2, C3, and C4) in the 

injected gas brings about a big effect on the gas–oil MMP, either increasing or decreasing it contingent on the 

component type [15]. As a general rule, the presence of H2S or intermediate hydrocarbon components in the injected 

gas lessens the gas–oil MMP, while the presence of C1 or N2 in the injected gas considerably increases the gas–oil 



MMP [18]. Nitrogen from flue gas and C1 from re-injected CO2 are the large possible impurities to CO2 and the 

recycled CO2. The severance of such components from the injected gas is hard and expensive. The present tendency 

is to apply the flue gas stream without purification in the injected gas stream. 

Indeed, the existence of non- CO2 components (e.g., H2S, SOx, and C2–C4) with critical temperatures higher than that 

of CO2 (31°C) causes an improvement in the solubility of the injected gas in reservoir oil [22]. This results in an 

increased injected-gas pseudo-critical temperature and a lower MMP. On the other hand, the existence of 

components (e.g., N2, O2, and C1) with lower critical temperatures causes a reduction in the solubility of the injected 

gas in reservoir oil and produces the opposite effect. 

Wilson (1960) stated that the pseudo-critical temperature of the injected gas affects MMP, and it could be used as a 

parameter in a miscibility correlation [33]. Likewise, Rutherford (1962) found, empirically, that the hydrocarbon 

gas/oil MMP in hydrocarbon miscible floods is a function of the injected-gas pseudo-critical temperature at a 

constant pressure [34]. Jacobson (1972) also suggested a similar scheme of using the pseudo-critical temperature as a 

correlation parameter for acid gases (CO2 with H2S)/oil MMP prediction. However, instead of using actual values, 

apparent critical temperatures were used for non-hydrocarbon components as correlation parameters [35]. Alston, et 

al. followed a similar approach to correlate impure CO2/oil MMP using the injected-gas pseudo-critical temperature, 

where apparent critical temperatures for C2 and H2S components (51.67°C) were also used to determine the pseudo-

critical temperature with the weight-fraction mixing rule. They found that the weight-fraction mixing rule provided 

better results than the mole-fraction method [15]. Similarly, Kovarik (1985) presented a correlation that is also based 

on the pseudo-critical temperature. In addition to the weight-fraction mixing rule, he used the mole-fraction rule to 

determine the pseudo-critical temperature and found that the two methods presented similar results [19]. 

Moreover, Sebastian, et al. (1985) also used the mole-fraction mixing rule to determine the injected-gas pseudo-

critical temperature in developing their impure CO2/oil MMP correlation. They also used an apparent critical 

temperature (51.67°C) for H2S [20]. Dong (1999) presented a similar approach to that of Sebastian, et al., but instead 

of using apparent critical temperatures, he used a factor with non-CO2 components (H2S, SO2, N2, and C1) in 

determining the injected-gas pseudo-critical temperature to represent the strength of these components in changing 

the apparent critical temperature of the injected impure CO2 relative to pure CO2 [22]. 

4.3. A method for decreasing the number of input variables  
Due to the existence of pseudo components in oil composition and its effect on MMP, critical property of this 

component must be initially determined.  There are several correlations for estimating the critical property of pseudo 

component. Most of these correlations use specific gravity and molecular weight as a correlation parameter [36].  

Boozarjomehry, et al. (2005) showed Riazi - Dobert and Twu correlations are more matched with experimental data 

among the present correlations to estimate the pseudo component critical temperature [37]. 

The present study considers 27 independent variables as oil composition, pseudo component property in oil (specific 

gravity and molecular weight), injected gas composition and reservoir temperature. So this algorithm is used to 

decrease the input variables as well as to increase the neural network efficiency. 

1- Weight / mole fraction mixing rules are used to decrease the input variables. 

2- Critical temperature and critical acentric factor of mixture are used as pseudo component variables. 

3-Riazi – Dobert and Twu correlation are applied to estimating C7
+
 critical temperature and Lee Kesler correlation 

are used to estimating C7
+
 critical acentric factor. 

4- H2S and C2 Critical temperature are considered both apparent and actual. 

5- Parameters Tro and Trg are used to dimensionless pseudo critical temperature oil and gas, and are applied instead of 

such variables (Tcmix_Oil and Tcmix_Gas) in some data sets generated. These parameters are defined in equations 4 & 5. 

Tro= Tcmix_Oil/T Reservoir                            (4) 

Trg= Tcmix_Gas/T Reservoir                                                              (5) 

Therefore, taking the above mentioned statements into consideration helps to generate 16 data sets the details for 

each being showed in table 1. 

 

 

 

 

 

 

 



 

 

 

 

 

Table1- Considerations taken in generating different data sets  

Method No. Mixing Rule 
C7

+ Critical Temperature 

Correlation 

Actual / Apparent Critical 

Temperatures for C2 and H2S 

Tro  and Trg as 

Input Variables 

Data Set 1 Mole Fraction Riazi & Daubert Actual No 

Data Set 2 Mole Fraction Twu Actual No 

Data Set 3 Weight Fraction Riazi & Daubert Actual No 

Data Set 4 Weight Fraction Twu Actual No 

Data Set 5 Mole Fraction Riazi & Daubert Actual Yes 

Data Set 6 Mole Fraction Twu Actual Yes 

Data Set 7 Weight Fraction Riazi & Daubert Actual Yes 

Data Set 8 Weight Fraction Twu Actual Yes 

Data Set 9 Mole Fraction Riazi & Daubert Apparent No 

Data Set 10 Mole Fraction Twu Apparent No 

Data Set 11 Weight Fraction Riazi & Daubert Apparent No 

Data Set 12 Weight Fraction Twu Apparent No 

Data Set 13 Mole Fraction Riazi & Daubert Apparent Yes 

Data Set 14 Mole Fraction Twu Apparent Yes 

Data Set 15 Weight Fraction Riazi & Daubert Apparent Yes 

Data Set 16 Weight Fraction Twu Apparent Yes 

 

4.4. Neural network principles and advantages 

Artificial neural network (ANN) is defined as a powerful data modeling tool that is able to capture and represent 

complex input/output relationships. The true power and advantage of neural networks lies in their ability to represent 

both linear and non-linear relationships as well as to learn such relationships directly from the data being modeled. 

Traditional linear models are simply inadequate when it comes to modeling data that contain nonlinear 

characteristics. The knowledge of the neural network is encoded in the values of its weights. The task of determining 

the weights is called training and is basically a conventional estimation problem. For this purpose, the back 

propagation strategy has become the most frequently used method that tends to yield reasonable answers. The 

training function updates weight and bias values according to the Levenberg-Marquardt back-propagation 

optimization. [29]. 

 

4.5. Developing the gas–oil MMP Model 

The choice of a specific class of network for the simulation of a nonlinear system of variables depends on a variety 

of factors such as the accuracy desired and the prior information concerning the input-output pairs. Feed forward 

neural network was assumed for all the runs.  Feed forward networks often have one or more hidden layers of 

sigmoid neurons followed by an output layer of linear neurons [29]. 

The structure of the neural network is constructed in a way that the difference between the predicted and observed 

(actual) values in the output vector is as small as possible. The most successful ANN architecture is the one that has 

the smallest prediction error on a data set for which it was not trained or the one with the least difference between the 

correlation coefficients (R) of the training set and the testing set [17]. The total number of data utilized in this work 

is 128. In this study various neural network architectures were investigated in order to obtain desired models for 

predicting MMP as a function of selected input variables. Different models on the number of hidden layers as well as 

the number of neurons in each hidden layer were also analyzed (table 2). 

Finally, the architecture of the neural network model was optimized by applying different amounts of hidden 

neurons. In this study, a one-hidden layer and two- hidden layer feed-forward back propagation network is created. 



The first and second hidden layers have TANSIG neurons. TANSIG is the “hyperbolic tangent sigmoid transfer 

function”. It calculates the output of a layer from its net input. The hidden layers have weights coming from the 

input. Each subsequent layer has a weight coming from the previous layer. Both layers have biases. The last layer is 

the network output.  

Since the neural networks use neurons that can be trained, the universality of the model depends on the number and 

range of data. As the number and range of data increases, the universality of the model shall also increase. Table 3 

shows the range on input data wider than other models. 

 

Table 2 - Different neural networks models. 

 

Model no. 

No. of 

Layer 

No. of Neurons in  

hidden layer 1 

No. of Neurons 

in  hidden layer 2 

Model 1 1 2 - 

Model 2 1 5 - 

Model 3 1 10 - 

Model 4 1 20 - 

Model 5 1 30 - 

Model 6 1 40 - 

Model 7 1 50 - 

Model 8 1 60 - 

Model 9 2 3 2 

Model 10 2 5 5 

Model 11 2 10 5 

Model 12 2 15 5 

Model 13 2 10 10 

Model 14 2 25 5 

Model 15 2 20 10 

Model 16 2 15 15 

Model 17 2 35 5 

Model 18 2 30 10 

Model 19 2 20 20 

Model 20 2 30 20 

 
 

 

 

 

 

This study concerns data collected from Glaso [16], Kuo [30], Firoozabadi [38], Metcalfe [5], Rathmell [32], Alston 

[15], Sebastian [22], Pedrod [6], Emera [23], slim-tube experiment on Iranian oil reservoir α& β [28] that it includes 

128 oil and gas samples. 

The following procedures were used after calculating necessary parameters for network training: 

1) Normalizing the inputs and targets 

2) Creating the network 

3) Dividing up samples for testing 

4) Training the network 

5) Simulating the network 

6) Reversing normalized outputs 

7) Plot regression 

 

 

 

 

Table 3 - Input variables range. 

Component 

Oil compassion 

(Mole %) 

Gas compassion 

(Mole %) 

Lower 

limit 

Upper 

Limit 

Lower 

limit 

Upper 

Limit 

N2 0.00 1.25 0.00 19.00 

H2S 0.00 2.32 0.00 50.00 

CO2 0.00 15.57 0.00 100.00 

C1 4.07 56.86 0.00 100.00 

C2 0.75 46.83 0.00 20.00 

C3 0.30 12.39 0.00 45.70 

iC4 0.19 3.20 0.00 10.00 

nC4 0.00 6.46 0.00 17.88 

iC5 0.01 2.45 0.00 1.70 

nC5 0.00 3.77 0.00 4.76 

C6 0.00 7.35 0.00 3.00 

C7
+ 16.59 80.75 0.00 5.09* 

SpGr (C7
+) 0.75 0.90 - - 

Mw (C7
+) 121.91 326.91 - - 

T Reservoir (F) 90.00 350.00 - - 

Experiment MMP (Psia) 950.00 6814.7 - - 

* Mole percent of heptanes in gas composition 



5. Results and discussion 

Initially, to investigate the ability of the developed gas–oil MMP model and also in order to avoid over-training, 

about 20 percent of the input-output data was randomly selected for the network testing and the rest was selected for 

network training and validation. After utilizing the program, a minimum average absolute relative error (AARE) for 

different models and data sets were gained (table 4). 

Data set 4 has lowest minimum AARE among all other data sets. Minimum AARE is 0.0609 for this data set. Data 

set 4 was used to generate weight fraction mixing rules and Twu correlation to estimate critical temperature C7+. 

Also actual critical temperatures were used for C2 and H2S components. To determine best neural network model 

with minimum errors, the result for different models were investigated. Table 5 shows the best outputs of variety 

models for different data sets. The minimum AARE for the data set 4 with model 5 is 0.0237 which is the lowest 

error among all data sets with different models. Model 5 is the one – hidden layered neural network with 30 neurons. 

Based on neural networks theory, as the number of neurons increases, the value of errors will be decreased and with 

more increasing in number of neurons, the value of errors will increase due to enhance of freedom degree [29]. Fig. 1 

& 2 show the minimum AARE for different models and data sets with one and two hidden layers. As can be seen in 

Fig. 1, the minimum error has occurred in a model with 30 neurons.  



 
  

 

Fig. 1. Minimum average absolute relative error (AARE) versus different single hidden layer neural network. 
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Fig. 2. Minimum average absolute relative error (AARE) versus different double hidden layers neural network.
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Typically, an application of back-propagation requires both a training set and a test set. Both the two sets contain 

input/output pattern pairs. While the training set is used to train the network, the test set is used to assess the 

performance of the network after the training is complete. To provide the best test of network performance, the test 

set should be different from the training set. The most successful ANN architecture is the one that has the smallest 

prediction error on a data set for which it was not trained. For Data Set 4 with model 5, 20 percent of data select for 

test set and training was run with 80 percent extant. The scatter plot in Fig. 3 presents comparison of the measured 

gas - oil MMP values with the new ANN model derived ones after training for Data Set 4. The results of the test data 

are shown in Fig.4 

 
Fig. 3.The experimental versus ANN simulated gas-oil MMP (Train).  Fig. 4.The experimental versus ANN simulated gas-oil MMP (Test). 

The correlation coefficient (R) test data is 0.998 which shows a high fitness with the experimental data. The 

correlation coefficient and the error resulted from the experimental and predicted values for this model (Data Set 4 

with model 5) are presented in table 6. 



Table 4 - Minimum average absolute relative error (AARE) for different models and data sets. 

NN. 

Model 

Data Set 

1 

Data Set 

2 

Data Set 

3 

Data  Set 

4 

Data Set 

5 

Data Set 

6 

Data Set 

7 

Data Set 

8 

Data Set 

9 

Data Set 

10 

Data Set 

11 

Data Set 

12 

Data Set 

13 

Data Set 

14 

Data Set 

15 

Data Set 

16 

Model 1 0.0927 0.0968 0.1164 0.1272 0.0992 0.0994 0.1293 0.1299 0.0894 0.0970 0.1239 0.1279 0.1064 0.1035 0.1205 0.1288 

Model 2 0.0863 0.0745 0.0796 0.0656 0.0793 0.0890 0.0729 0.0978 0.0724 0.0771 0.1003 0.0886 0.0682 0.0855 0.0889 0.0905 

Model 3 0.0771 0.0761 0.0680 0.0656 0.0712 0.0714 0.0778 0.0769 0.0754 0.0727 0.0789 0.0698 0.0709 0.0716 0.0841 0.0773 

Model 4 0.0601 0.0565 0.0613 0.0584 0.0703 0.0753 0.0585 0.0652 0.0656 0.0656 0.0569 0.0574 0.0627 0.0704 0.0599 0.0588 

Model 5 0.0575 0.0616 0.0523 0.0237 0.0667 0.0591 0.0672 0.0632 0.0610 0.0550 0.0629 0.0558 0.0489 0.0572 0.0610 0.0639 

Model 6 0.0541 0.0604 0.0562 0.0565 0.0745 0.0617 0.0568 0.0496 0.0625 0.0542 0.0517 0.0576 0.0543 0.0712 0.0620 0.0656 

Model 7 0.0623 0.0635 0.0372 0.0591 0.0805 0.0703 0.0596 0.0661 0.0496 0.0641 0.0568 0.0681 0.0675 0.0649 0.0621 0.0715 

Model 8 0.0557 0.0673 0.0518 0.0527 0.0761 0.0868 0.0780 0.0595 0.0669 0.0617 0.0714 0.0504 0.0747 0.0680 0.0778 0.0642 

Model 9 0.0952 0.0851 0.0917 0.0950 0.0977 0.0938 0.1065 0.1078 0.0827 0.0837 0.1031 0.0958 0.0977 0.0873 0.1132 0.1256 

Model 10 0.0689 0.0606 0.0796 0.0730 0.0639 0.0840 0.0875 0.0908 0.0676 0.0762 0.0541 0.0823 0.0788 0.0756 0.0836 0.0858 

Model 11 0.0769 0.0704 0.0584 0.0618 0.0711 0.0638 0.0552 0.0679 0.0716 0.0711 0.0712 0.0525 0.0649 0.0715 0.0684 0.0718 

Model 12 0.0558 0.0616 0.0647 0.0584 0.0640 0.0550 0.0454 0.0659 0.0657 0.0605 0.0717 0.0655 0.0551 0.0743 0.0654 0.0599 

Model 13 0.0583 0.0642 0.0517 0.0573 0.0697 0.0643 0.0685 0.0697 0.0612 0.0655 0.0502 0.0420 0.0663 0.0614 0.0717 0.0651 

Model 14 0.0509 0.0617 0.0615 0.0529 0.0499 0.0663 0.0681 0.0597 0.0637 0.0371 0.0620 0.0655 0.0538 0.0646 0.0720 0.0779 

Model 15 0.0433 0.0502 0.0556 0.0524 0.0651 0.0600 0.0708 0.0625 0.0525 0.0547 0.0556 0.0424 0.0675 0.0581 0.0659 0.0659 

Model 16 0.0564 0.0591 0.0585 0.0370 0.0646 0.0590 0.0617 0.0673 0.0534 0.0612 0.0630 0.0407 0.0580 0.0646 0.0431 0.0617 

Model 17 0.0561 0.0612 0.0598 0.0587 0.0541 0.0659 0.0466 0.0553 0.0490 0.0604 0.0631 0.0563 0.0524 0.0641 0.0556 0.0767 

Model 18 0.0534 0.0634 0.0503 0.0386 0.0533 0.0567 0.0476 0.0689 0.0525 0.0475 0.0495 0.0595 0.0564 0.0579 0.0552 0.0568 

Model 19 0.0569 0.0598 0.0575 0.0629 0.0571 0.0585 0.0608 0.0542 0.0614 0.0593 0.0573 0.0476 0.0448 0.0471 0.0588 0.0577 

Model 20 0.0549 0.0576 0.0594 0.0608 0.0637 0.0581 0.0521 0.0671 0.0568 0.0561 0.0552 0.0614 0.0644 0.0613 0.0566 0.0403 

Average 

Minimum 

AARE  

0.0636 0.0656 0.0636 0.0609 0.0696 0.0699 0.0685 0.0723 0.0640 0.0640 0.0679 0.0644 0.0657 0.0690 0.0713 0.0733 

 

Table 5 - Minimum AARE different models and data sets. 

NN. 

Model 

Data Set 

1 

Data Set 

2 

Data Set 

3 

Data  Set 

4 

Data Set 

5 

Data Set 

6 

Data Set 

7 

Data Set 

8 

Data Set 

9 

Data Set 

10 

Data Set 

11 

Data Set 

12 

Data Set 

13 

Data Set 

14 

Data Set 

15 

Data Set 

16 

Model 

No. 
15 15 7 5 14 13 13 6 17 14 18 16 19 19 16 20 

Minimum 

AARE 
4.33 5.02 3.72 2.37 4.99 5.50 4.54 4.96 4.90 3.71 4.95 4.07 4.48 4.71 4.31 4.03 



Table 6- Correlation coefficient and the error resulted for experimental MMPs and ANN predicted values. 

Parameter AARE correlation coefficient 

Training set 0.0237 0.999 

Testing set 0.0325 0.998 

 

More models present prediction of gas- oil MMP by researches that are used for pure CO2 or impure CO2. Several 

models are applied for determination of minimum miscibility pressure of the light hydrocarbon and flue gas. While 

U-ANN has more universality in comparison with the other models, it can predict minimum miscibility pressure for 

all types of gas in a wider range of input variable. This model is also accurate and has less error. In order to predict 

impure CO2 MMP, knowing the pure CO2 MMP value in all of previous models is required, while the new model 

directly predicts impure CO2 MMP with the effective parameters. Table 7 shows that the average relative error 

(ARE), average absolute relative error (AARE) and the standard deviation of error for the new proposed model are 

respectively 0.65 %, 2.37 %, and 3.03 % for 128 data. It should also be noted that Shokir models used 65 data in 

their model.   

Table 7- Comparison of the gas–oil MMP obtained from the new U-ANN based model to the calculated gas–

oil MMP from different literature models 

 UANN 
Shokir 

(2007) 

Shokir 

(2007) 

Emera 

and 

Sarma 

(2005) 

Emera 

and 

Sarma 

(2004) 

Dong 

(1999) 

Eakin 

and 

Mitch 

(1988) 

Alston 

et al. 

(1985) 

Alston 

et al. 

(1985) 

Glaso 

(1985) 

Sebasti

an et 

al. 

(1985) 

Kovari

k 

(1985) 

ARE (%) 0.65 0.14 0.25 −0.62 0.65 2.28 63.11 −5.05 −5.37 −0.85 1.37 −23.43 

AARE (%) 2.37 3.30 2.55 5.72 4.05 10.19 70.40 6.64 7.54 9.33 5.93 39.48 

Standard 

deviation (%) 
3.03 4.67 3.11 7.15 4.25 15.17 46.83 7.51 7.26 7.18 7.55 51.69 

Correlation 

coefficient 
0.999 0.998 0.998 0.970 0.993 0.910 0.50 0.960 0.967 0.970 0.950 0.830 

No. Data 128 67 30 61 20 45 52 38 30 46 60 38 

Pure CO2             

Impure CO2             

Hydrocarbon 

and flue gas 
            

Ultimately, to check and confirm the precision of the new U-ANN model, MMPs were calculated for 20 systems not 

used in building the model for CO2 and natural gas displacements of crude oils. The new model effectively predicted 

the experimental gas–oil MMP, with a high precision, for existence of different non-CO2 components up to 70-

mole%, and up to 45.7 mole% of C1 in the injected natural gas stream (as shown in Tables 8). From Tables 8, the 

new model gives the precise prediction of the experimental gas–oil MMP for all the tested systems with the lowest 

average relative error and average absolute relative error among all tested gas–oil MMP correlations.  

Table 8 - Comparison of gas–oil MMP approximated from the new U-ANN model to the experimental MMP 

and to the calculated MMP from different conventional correlations. 

 

 UANN Shokir (2007) 
Emera and 

Sarma (2004) 

ARE (%) 0.16 0.19 0.05 

AARE (%) 3.75 4.47 6.69 

Standard deviation (%) 4.31 6.00 9.00 

6. Conclusion 

An attempt was made in this study to investigate the application of a neural networks concept for prediction of MMP 

in a gas injection process. The interrelations of MMP with different compositions of driving gas and reservoir 

temperature, molecular weight of C7
+
 oil fraction and different compositions of reservoir oil have been analyzed, all 

of which resulting in the U-ANN model. To have a model more complete and universal than the others, 128 oil and 

gas samples with experimental MMP data were used. The MMP data derived from literature and slim-tube 

experiment of Iranian oil reservoirs were employed to train and test the models. Mixing rules were used to decrease 

the independent variables. The critical property of C7
+
 was estimated with existent practical correlations. 16 data sets 



were generated with deferent mixing rules as well as with C7
+ 

critical property estimating correlations. Various 

neural networks architectures were investigated to obtain desired models for predicting MMP as a function of 

selected input variables. Different scenarios on the number of hidden layers and the number of neurons in each 

hidden layer were analyzed in order to obtain the best fit to the given data. 

The model was successfully applied to pure CO2, impure CO2, flue gas and hydrocarbon gas streams. The 

comparison between the prediction accuracies of the universal neural network and other methods indicated that the 

neural network approach was more accurate in predicting MMP. The result showed that the weight-fraction mixing 

rule with Twu correlation to estimating C7+ critical property provides better results than the other methods. The 

model was tested with 20 different data which were not used in the network training. The testing results from the U-

ANN model and empirical correlations showed that the proposed model can predict the MMP with better accuracy 

than other available correlations.  

Thus, the results of this study suggest that the neural network model with mixing-rules methods is more reliable than 

other statistical methods for predicting MMP. Specially, under conditions with limited field information, the neural 

network approach can produce a higher accuracy than other estimating methods. 
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