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ABSTRACT

Facies modeling is an essential part of reservoir characterization. The connectivity of facies model is
very critical for the dynamic modeling of reservoirs. Carbonate reservoirs are so heterogeneous that
variogram-based methods like sequential indicator simulation are not very useful for facies modeling. In
this paper, multiple point geostatistics (MPS) is used for facies modeling in one of the oil fields in the
southwest of Iran. MPS uses spatial correlation of multiple points at the same time to characterize the
relationships between the facies. A small part of the oil field, in the vicinity of the simulation grid, is used as
a training image, in which there is 25 well data for creating suitable training image by the principal
component analysis (PCA) method. In this study, MPS is successfully applied to facies modeling and the
spatial continuity of facies is reasonably reproduced. The facies model verifies the reproduction of facies
proportion in training image and wells. Also, five wells are used for the cross correlation of the facies
model. The results indicate that the facies model shows a strong correlation with the facies of these five
wells. Additional hard data, which is extracted from high confidence seismic data, is so useful for the

improvement of the facies model.

INTRODUCTION

Facies modeling is usually done by deterministic
[1,2] and several stochastic methods [3-5]. Variogram-
based stochastic methods cannot describe the spatial
distribution of complex structures in heterogeneous
reservoirs such as carbonate reservoirs. Features that
cannot be modeled by traditional geostatistical
methods can be modeled by object-based methods,
but data conditioning is difficult. MPS is introduced to
overcome the limitations of the variogram-based
stochastic methods. MPS reproduces the nonlinear
features in reservoirs by considering the relationship
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between multiple points at the same time [6,7].
MPS integrates the strengths of pixel-based and
object-based methods [6,8,9]. It uses the flexibility
of the pixel-based methods by modeling a pixel at a
time; hence, data conditioning is easily accomplished,
and it allows the reproduction of the facies shapes
and patterns similar to object-based methods. For
these reasons, MPS is introduced for the facies
modeling of complex reservoirs and can be
conditioned to hard and soft data.

This study focus on the facies modeling of
heterogeneous carbonates reservoirs. In MPS, a
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training image is needed, so a small part of the oil
field in the vicinity of simulation grid is used as the
training image. Facies modeling is done by using the
facies of ten wells, the probability of facies, and
additional hard data. The facies is modeled by single
normal equation simulation (SNESIM) algorithm
and is cross validated by the facies of five wells.

Methodology

There are many statistical and geostatistical
methods for facies modeling. In this study, PCA and
MPS methods are used for facies modeling. SNESIM
algorithm is introduced and discussed as a program,

which is used by the MPS method.

PCA

PCA is mathematically defined as an orthogonal
linear transformation, which transforms the data to
a new coordinate system with the greatest variance
by the projection of the data on the first axis. The
second greatest variance is projected on the second
axis, and so on [10]. PCA is one of the statistical
multivariable methods, which reduces the dimension
of data. By this method, it is possible to change many
dependent variables to a few independent variables,
which are called principal components. In summary,
PCA involves the following steps [11]:

1- PCA requires N inputs and returns N linearly

transformed outputs (eigenvectors), called
principal components. Below formula is used for
the transformation of the input data to the

transformed outputs:

u =wx (1)

where, u is m-dimensional projected vector, and
x is the original n-dimensional data vector.

2- The m projection vectors, which maximize the
variance of u (the principal axes) are given by
the eigenvectors (e, e, ... e,) of the data set’s
covariance matrix S associated with the largest
m eigenvalues. The above observed data

covariance matrix is as follows:
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n

5= (i =m)(x; —p) (2)

n-14

3- The eigenvectors and eigenvalues can be
found by solving the set of equations:

(S-41)e =0,i =1,...,m (3)

4- PCA ranks the PC’s
contribution to the total variance of the dataset

according to their

(determined by descending eigenvalues).

MPS

Variogram is a statistical tool describing the difference
of a variable observed at any two spatial locations. The
successful application of the geostatistical methods
relies on the variogram. Different types of reservoir
heterogeneities may produce a similar experimental

variogram, as shown in Figure 1.
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Figure 1: In this picture, there are three different
geological
geological phenomena in EW and NS directions is

phenomena. The variograms of these

plotted. The range and nugget of these variograms are
so similar, so variogram cannot properly describe the
geological heterogeneity [12].

The popularity of variogram-based geostatistics lies
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in the mathematical simplicity of the variogram
model, not in its power to generate different types
of geological models. MPS is a family of spatial
geostatistical interpolation algorithms which are
used to create conditional simulations of reservoir
properties. MPS are able to honor well and seismic
data. These algorithms require a training image to
represent a spatial distribution of geological properties
which is expected to be similar to the target property.
The main idea of MPS is the description of spatial
correlation of multiple points at the same time.

In MPS method, there are several pixel-based and
pattern-based algorithms for complex geological
structure modeling. Pixel-based algorithms such as
SNESIM and pattern-based algorithms such as SIMPAT
(simulation with patterns), FILTERSIM (filter-
based simulation), DISPAT (distance-based pattern
modeling), and CCSIM (cross correlation-based
simulation) can be used for facies modeling. Strebelle
developed the first multiple-point geostatistics
algorithm of SNESIM for the simulation of discrete
variables [13]. SNESIM uses a pixel-based equation
simulation approach, which makes the conditioning
to well and seismic data much easier than object-
based modeling techniques. For improving the
connectivity of a geological phenomenon,
pattern-based algorithms have been developed.
Arpat for first time introduced SIMPAT as a pattern-
based MPS algorithm, which uses a similarity rule to
find the most similar pattern to the conditioning
data [14]. SIMPAT is a very time consuming and
CPU demanding algorithm. Thus, Zhang introduced
a new algorithm FILTERSIM, with the idea of
summarizing multiple-point spatial patterns using a
few general linear filters [15]. This pattern-based
multiple point geostatistical algorithm can be used for
the modeling of continuous and categorical variables.
These summaries of patterns caused by filters reduce
dimensions and all bins are pre-classified into a data
tree structure, so this algorithm has a high speed
and reduces memory demanding. After that,
Honarkhah introduced DISPAT as a distance-based
algorithm for modeling patterns in space, which
improves pattern reproduction and continuity and
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reduces parameters, user interaction, and
computation time [16]. The mentioned pattern-
based algorithms require a huge data base, which
cause more memory and CPU demanding. Thus,
Tahmasebi introduced another pattern-based
algorithm, which works based on cross correlation
function and is called CCSIM [17]. This algorithm
significantly improved the CPU time and RAM
demanding. In this study, Petrel 2011 software is
used for facies modeling of this carbonate reservoir.
This software only uses SNESIM algorithm and does

not employ the other algorithms.

SNESIM Algorithm

SNESIM
simulation” and is an algorithm for the reservoir

represent “single normal equation
facies modeling. This algorithm is a pixel-based
method which uses multiple point geostatistics and
is combined with its sequential nature. It efficiently
generates complex realizations such as sinuous
channels. The idea behind SNESIM is very simple;
each pixel node is simulated sequentially in a
random order. Facies is drawn with conditional
probabilities that are frequencies extracted directly
from a given training image, which reflects a prior
knowledge of the reservoir [18]. SNESIM is a
sequential simulation algorithm, much in the
style of well-known methods such as sequential
Gaussian simulation and sequential indicator
simulation [19,20]. It relies on the idea of
simulating each grid cell facies or petrophysical
property sequentially along a random path,
where the simulation of cells later in the process
is constrained by the cells earlier simulated
along with well and seismic data. There are two
main parts in the SNESIM algorithm. The first
part is the construction of a search tree to store
pattern proportions from training images. The
second part is sequential simulation section,
where simulated values are drawn based on
these proportions. The algorithm corresponding
to the simplest SNESIM implementation is given
below [13]:

1- Define a multiple point template T, to scan
http://jpst.ripi.ir
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the training image.

2- Scan the training image using the multiple point
template T, and store the pattern proportions in a
search tree object.

3- Assign available conditioning data to their
nearest simulation node.

4- Define a random path visiting all locations to be
simulated once and only once.

5- For each location u do the following:

a. Determine the current conditioning data event
(dn) within the template T,

b. Calculate the conditional probability distribution
based on the pattern proportions from the search
tree.

Prob{ =s;|d, }

=Prob{8() =s;andS (u,)=s; =10}

(4)
Prob{S (u, ) =s, ,.cza=1..n|

¢. Randomly take sample from this conditional
probability distribution and assign this simulated
value to location u. Treat the simulated value as
conditioning data.

6- Repeat step 5, until all nodes in the grid are
simulated.

RESULTS AND DISCUSSION

Facies Modeling

The case study is one of Iranian southwest oil fields.
A part of the oil field, which is located on the
northwest nose of anticline, is used for facies
modeling. In this oil field, main reservoir is Asmari
formation, which is composed of limestone,
dolomite, sandstone, and shale. Asmari formation is
divided to five geological zones, in which upper
zones are mainly composed of limestone and
dolomite, and lower zones are mainly composed of

sandstone and shale. There are forty wells with
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petrophysical logs and core data. The facies of these
wells are interpreted by petrophysical logs and
core description. These facies are clustered into
four main classes, namely dolomite, limestone,
sandstone, and shale (Figure 2). Also 3D seismic
data and seismic attributes of Asmari formation are
available for facies modeling.

Training Image

Training image is a three dimensional reservoir
picture which conditioned to any local reservoir
data. It is sufficient to contain relative dimensions
and, most importantly, relevant geological features
[13].

The training image for carbonate reservoirs is a 3D
conceptual model of the reservoir, containing
information about facies distribution in space and
their relations with respect to each other. Training
images can come from several different sources
such as interpreted outcrop photographs,
geologists sketch, and so on. Moreover, the training
image can be generated by using unconditional
object-based [21,22,23,24] or process-based
simulations [25]. An accurate training image is
one that combines different sources of data
(geology, geophysics, and reservoir data) to reflect a
reservoir features. The most likely source of data for
creating a training image would be a part of the oil
field near the simulation grid.

For this reason, the training image is selected from
a small part of this oil field, which is in the vicinity
of the simulation grid. The training image is
located on the northwest nose of anticline with a
high density of wells, the facies proportion of
which is similar to wells in the simulation grid
(Figure 3 and Table 1).

The relation between seismic attributes and
facies is analyzed. Nine seismic attributes, which
are related to facies, are used for facies modeling.
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Figure 2: Facies of four wells which is interpreted by petrophysical well logs and core description.

Table 1: Facies proportion of wells in the training
image and simulation grid.

Facies Type Wells Wells
(training image) | (simulation grid)
Dolomite 23.99 24.67
Limestone 33.98 40
Sandstone 21.47 18.05
Shale 20.56 17.27

These nine seismic attributes are envelope,
instantaneous frequency, flatness, original
amplitude, chaos, relative acoustic impedance,
attenuation, dominant frequency, and instan
taneous phase (Figure 4).

In Petrel software, the PCA method is used for
creating the training image (facies modeling). Facies
of twenty five wells and nine seismic attributes are
used as the input data. By the PCA method, the
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principal component analysis spreadsheet is
produced. Five major principal components are
used as the input data for training the estimation
model. The training image is modeled by a 500-time
repeat, a 5% error limit, and a 30% cross validation.
The facies of this training image is modeled by PCA,
which honors seismic attributes and facies of
twenty five wells (Figure 5). The correlation of this
training image with these 25 wells is 0.66 (Table 2).

Table 2: Facies proportion of wells and the training
image modeled by PCA.

Facies Type Wells Training Image
T e Modeled by PCA
Dolomite 23.99 19.27
Limestone 33.98 36.77
Sandstone 21.47 23.26
Shale 20.56 20.71

http://jpst.ripi.ir
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Figure 3: Dense hard data used for creating the
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Figure 5: The training image modeled by PCA method.
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Facies Modeling by MPS

The facies model should be conditioned by hard
and soft data, so wells and three dimensional
seismic data are used as hard and soft data
respectively. The term hard data is used to
emphasize the fact that the modeling method
should exactly reproduce this data value at its
location [14]. In this study, the facies of ten wells
are used as the hard data (Figure 6).

For every facies, a soft probability property can be
determined. The soft data are to be used only as a
guide to modeling and are not expected to be
reproduced exactly [14]. Seismic attributes, which
are used for facies probability modeling, are shown
in Figure 4. The probability of facies is modeled by
PCA and seismic attributes (Figure 7). Additional
hard data is extracted from high confidence seismic
data. Additional hard data can be created from
seismic and calculated from high confidence soft
data. For extracting hard data, 3D acoustic
impedance, effective porosity, and gamma ray are
used and it is truncated to show facies in specific
ranges (Table 3). These ranges are checked in wells
and they are completely correlated with wells
facies. The 3D additional hard data, which are
calculated from 3D geological model, are shown in
Figure 8.
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Figure 6: Hard data for facies modeling by MPS.
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Table 3: Ranges of acoustic impedance, effective porosity, and gamma ray for different facies.

Facies Acoustic Impedance (gr/cm3.S) | Effective Porosity (V/V) Gamma Ray (CGR) (GAPI)
Dolomite >16000 - -
Limestone <12800 and >13500 - -
Sandstone <9100 >0.07 <50

Shale - <0.07 >85
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Figure 7: 3D probability model of four facies. I Dty
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The MPS simulation program SNESIM is used to
generate facies models honoring the hard data,
additional hard data, and soft data. For facies l St
modeling by MPS, at first, the training image is
preprocessed to extract all patterns. For pattern

Sandstone

Realization | Realization 2

extraction, an elliptical template with dimensions of
(5 by 5 by 3 meters) and 32 informed nodes is used.
Then, these patterns are used as building blocks
within a sequential simulation algorithm. Five MPS
realizations with elliptical template and data
conditioning are generated in the simulation grid.
MPS simulation for five realizations took
approximately one hour. The facies realization is
shown in Figure 9.

Realization 3 Realization 4 NS

Figure 9: Five realizations of 3D facies model by MPS

method.
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Validation of Facies Model

There are a number of methods to validate facies
models. Facies modeling by MPS is validated as follows:

1- Reproduction of histogram: The histogram of
facies model and wells should be equal or close
to each other.

2- Reproduction of the vertical variogram model (or
reproduction of facies proportions per layer): facies
proportions for each layer in facies model and wells
should be equal or close to each other.

3- Blind test or cross correlation: The facies model
should show a good correlation with the facies of
wells, which are not used in the facies modeling.

The facies proportions of wells and MPS realizations
are compared. As it is shown in Table 4, the facies
proportions of wells are successfully reproduced. In
other words, the histogram of wells facies is

Journal of Petroleum
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successfully reproduced. It is concluded that facies
model by MPS method properly conserve the facies
histogram of the wells. Furthermore, facies
proportions of all the layers in the wells, the
training image, and MPS model are compared. The
facies proportions in the wells and the training
image are successfully reproduced (Figure 10), so
the facies of this carbonate reservoir is modeled
properly by an MPS method.

For recognizing the best realization and the
accuracy of MPS facies modeling, the facies models
are cross correlated with five wells, which are from
all the parts of the simulation grid, and are not
incorporated in facies modeling) (Figure 11 and
Table 5). The correlation of MPS realizations facies
with these wells facies are shown in Table 6. The
best correlation between MPS realizations facies
and wells facies is 0.63.

Table 4: Facies proportion of the MPS realizations, the wells, and the training image.

Facies type MPS1 MPS2 MPS3 MPS4 MPS5 wells Training image
Dolomite 24.19 24.37 24.41 24.34 24.59 24.67 19.27
Limestone 42.01 42.05 41.82 41.73 42.08 40 36.77
Sand 17.27 16.92 17.25 17.11 16.72 18.05 23.26
Shale 16.45 16.56 16.42 16.72 16.51 17.27 20.71

Table 5: Facies proportion of five wells.

Facies Type

Facies of five wells (%)

Dolomite

36.52

Limestone

29.70

Sandstone

18.47

Shale

15.31

Table 6: Correlation coeficient of facies in the MPS realizations and five wells.

Realizations | Correlation with facies of five wells
MP1 0.6318
MP2 0.6097
MP3 0.5935
MP4 0.5693
MP5 0.5764
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Figure 10: Facies proportions of the wells, the training image,
and MPS in all the layers.
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Figure 11: Five wells for the validation of facies
models by MPS.

CONCLUSIONS

This study is one of the first studies applying
MPS method to carbonate reservoirs. In this
study, the MPS is successfully applied to the
facies modeling of the heterogeneous carbonate
reservoir. The training image is properly produced by
PCA method and the integration of petrophysical,
geological, and seismic data. Additional hard data
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are used in facies modeling by MPS method.
This additional hard data were so helpful, so it is
one of the strength points of MPS with respect to
other geostatistical methods. The facies modeled by
MPS is validated by the facies of five wells and the
histogram of well data. The good correlation
between facies model and five wells and the
reproduction of facies histogram in the wells
show that the facies is properly modeled by
MPS. It is recommended to use object-based
methods for creating the training image in
channels and fluvial reservoirs. The algorithms
of MPS method often require large CPU and RAM
demands, so it is recommended to develop an
algorithm to use lower CPU and RAM resources.

NOMENCLATURE

N : Number of input and output data
U : m-dimensional projected vector
X : Original n-dimensional data vector
M : Projection vectors

(e, ez ..., en) : Eigenvectors

S : Covariance matrix

A : Eigenvalues

T, : A multiple point template T,
dn : Conditioning data event
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