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ABSTRACT 

Permeability can be directly measured using cores taken from the reservoir in the laboratory. Due 

to high cost associated with coring, cores are available in a limited number of wells in a field. Many 

empirical models, statistical methods, and intelligent techniques were suggested to predict 

permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The 

main objective of this study is to assess different approaches to the prediction of the estimation of 

permeability in a heterogeneous carbonate reservoir, i.e. Fahliyan formation in the southwest of 

Iran. The considered methods may be categorized in four groups, namely a) empirical models 

(Timur and Dual-Water), b) regression analysis (simple and multiple), c) clustering methods like MRGC 

(multi-resolution graph-based clustering), SOM (self organizing map), DC (dynamic clustering) and AHC 

(ascending hierarchical clustering), and d) artificial intelligence techniques such as ANN (artificial 

neural network), fuzzy logic, and neuro-fuzzy.  

This study shows that clustering techniques predict permeability in a heterogeneous carbonate 

better than other examined approaches. Among four assessed clustering methods, SOM performed 

better and correctly predicted local variations. Artificial intelligence techniques are average in 

modeling permeability. However, empirical equations and regression methods are not capable of 

predicting permeability in the studied reservoir. The constructed and validated SOM model with 

6×9 clusters was selected to predict permeability in the blind test well of the studied field. In this 

well, the predicted permeability was in good agreement with MDT and core derived permeability. 

Keywords: Permeability, Carbonate Reservoir, Clustering, Intelligent, Experimental Correlation 

INTRODUCTION 

In addition to being porous, a reservoir rock 

must be able to allow fluids to flow. The ability 

of rock to conduct fluids is defined as 

permeability. Core is the most reliable source of 

matrix permeability. Usually in a field, core is 

available in a limited number of wells because of 

costs and technical limitations. Permeability as 

one of the most important petrophysical 

properties of a reservoir is the main input to 

static and dynamic models. In order to construct 

a realistic model of a reservoir, accurate 

permeability data with an appropriate distribution 

ought to be available. Thus it is essential to 

predict permeability from easy-to-obtain and 
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frequent data such as logs. The prediction of 

permeability is not straightforward. The difficulty 

of predicting permeability is due to the fact that 

carbonate rocks are very heterogeneous and 

factors such as diagenesis (e.g. cementation), 

texture, grain size variation and fabric, cementation, 

and clay content control permeability [10]. Unlike 

core, wireline logs are available in almost all wells in 

a field. By establishing a robust model which relates 

permeability to wireline log responses permeability 

in un-cored wells can be predicted. 

More than 40 percent of the world oil reservoirs 

are placed in carbonate rocks. Because of the 

economic importance of carbonates, their 

accurate characterization is vital for exploration 

and production. The ultimate goal of reservoir 

characterization is to improve production efficiency 

and oil recovery by understanding and modeling 

the reservoir. To correctly model the flow 

behavior in a carbonate reservoir, it is essential 

to understand the permeability profile [20].  

Carbonate rocks are unstable and diagenetic 

processes chemically and physically alter a 

somehow homogeneous formation into a 

completely heterogeneous one. The permeability of 

a carbonate reservoir often is severely affected by 

tectonic and diagenetic phenomena like fracturing, 

dissolution, and leaching, which makes the 

prediction of permeability very difficult. 

In the last decade, many researchers have tried 

to estimate permeability from wireline logs. 

Because of availability and frequency of wireline 

logs, they have become a popular source for 

estimating permeability. Archie (1942) introduced 

relationships which estimated permeability via 

core analysis data such as porosity and formation 

resistivity factor [3]. Porosity, water saturation, 

capillary pressure, formation resistivity factor, 

and NMR T1 & T2 parameters, derived from 

wireline logs, are used to estimate permeability. 

Leverett (1941), Tixier (1949), Wyllie and Rose 

(1950), Timur (1968), and Coates and Dumanoir 

(1974) developed correlations based on well log 

measurements to determine permeability [5, 

21-23]. 

In recent years, artificial intelligence techniques 

have widely been used to estimate permeability 

from wireline logs. Balan et al. (1995), 

Mohaghegh et al. (1997), Lin et al. (1994), Zhang 

et al. (1996), and Huang et al. (1996) predicted 

permeability by means of neural networks. 

Cuddy (1998) and Finol et al. (2001) used the 

fuzzy approach to estimate permeability [4,7-

9,13,16,25]. 

In this study, different approaches to permeability 

prediction are examined in order to establish a 

robust model to predict permeability in un-cored 

wells. The method with the best performance, 

i.e. SOM, was selected to predict permeability in 

un-cored wells. The predicted permeability in 

the blind test wells was compared with MDT- 

(Modular Formation Dynamics Tester) derived 

permeability and core permeability to ensure 

that the model worked properly. 

MATERIALS AND METHODS 

The studied field is located in Zagros fold-thrust 

belt, the southwest of Iran (Figure 1). Zagros is a 

part of Tethys Ocean and is one of the most 

important petroleum basins in the world [1]. 

This basin is located in the south west of Iran 

and north of Iraq. The geological history of this 

basin includes long time subsidence and deposition 

interrupted by short time uplift. Folding process of 

this basin occurred in Miocene and Pliocene and 

continued until now, which has formed long 

anticlines [17]. These anticlines constitute most 

of oil traps in this basin. 

Fahliyan (the uppermost Jurassic-Cretaceous) is 

one of the major reservoir formations of Iranian 

oil fields. Fahliyan is a clean limestone comprised 

of massive oolitic or pelletal limestone [2]. In the 

studied field, Fahliyan formation is divided to 

eight reservoir zones. 



 Journal of Petroleum  
Evaluating Different Approaches to Permeability Prediction  Science and Technology 

Journal of Petroleum Science and Technology 2015, 5(1), 79-90  http://jpst.ripi.ir 

© 2014 Research Institute of Petroleum Industry (RIPI) 

| 81 

 
Figure 1: Location of the studied field 

In this study, the wireline and core data of four 

wells obtained from Fahliyan formation were 

used. The datasets of three wells (A, B, and C) 

were used for building models and the forth well 

(D) left out for the test. A suit of logs including 

neutron porosity (NPHI), sonic log (DT), 

resistivity log (LLD), photoelectric (PEF), and 

natural gamma ray (GR) was selected as the 

input to all the models (Figures 2 and 3). These 

logs record the properties of the reservoir, 

which control permeability such as shale 

content, effective porosity, water saturation, 

and lithology.  

 
Figure 2: Cross plot of core permeability versus 

selected wireline logs (From left to right: NHPI, DT, 

LLD, PEF, and GR)  

Permeability Modeling 

In order to predict permeability in un-cored 

wells, models should be constructed. The inputs 

to these models are well logs and the output is 

permeability. In wells with core data (A, B, and 

C), the models were constructed and tuned, and 

then they were used to predict permeability in 

un-cored wells. In the following, all the models 

are briefly described and the predicted 

permeability by means of each one is presented. 

  

 
Figure 3: Statistics and histogram of permeability as the output of the models and selected wireline logs 

(NHPI, DT, LLD, PEF, and GR) as the inputs to the prediction models 
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Empirical Models 

Empirical models are based on experiential 

observations and are introduced for particular 

reservoirs. For applying them to other reservoirs, 

with different properties, it is necessary to 

calibrate their parameters. Generally empirical 

equations relate permeability to porosity and 

water saturation. First, we calibrated the models 

by using the core data of train wells. In train 

wells, the inputs (porosity and irreducible water 

saturation) and the output of the model 

(permeability) were available and the only unknown 

of the equations (A and B) can be calculated. Then, 

in blind-test well the permeability was predicted 

using the calibrated models. In this study, we 

used two common empirical equations for 

predicting permeability: Timur and Dual-Water.  

Timur (1968) found a relationship for estimating 

the permeability of sandstones from the in-situ 

measurements of porosity and residual saturation 

[21]. His model is applicable where the condition 

of residual saturation exists. The main source of 

uncertainty in Timur model is the high amount 

of error in determining the residual saturation. 

In our case, the residual water saturation of the 

studied reservoir was obtained from capillary 

pressure tests. The average value of residual 

saturation was 0.18. The Dual water model was 

developed by Coates and Dumanoir in 1974 [5]. 

They suggest this model for shaly formations. 

Total porosity, effective porosity, and irreducible 

water saturation are the inputs to this model. 

The equations and calibrated parameters are 

presented in Table 1. 

Regression Analysis 

Regression analysis is a statistical technique that 

identifies the relationship between two or more 

quantitative variables: a dependent variable whose 

value is to be predicted, and independent 

variable(s). Regression analysis is used to 

understand the statistical dependence of one 

variable on other variables. 

We utilized simple and multiple regressions in 

order to estimate permeability from wireline 

logs. In the simple regression, the effective 

porosity (PHIE) was the input (independent 

variable). In the multiple regression, DT, LLD, 

NPHI, PEF, and GR were selected as the inputs. 

In the multiple regression, the data is 

constituted using the below equation: 

( ) ( ) ( )
( ) ( ) ( )

0 1 2

3 4 5

    

  

Log perm a a DT a LLD

a NPHI a PEF a GR

= + × + × +

× + × + ×
 

The values between brackets are known and the 

coefficients (a0, a1, a2, a3, a4, and a5) are 

unknown. A system of matrix (Y=aX) representing 

the above linear equations is constructed and 

solved for unknown coefficients by minimizing 

the sum of the squares of the deviations of the 

data from the model (least-squares fit). The 

equation below represents the relationship 

between permeability and PHIE, which is 

obtained from the simple regression. 

���� = 10(	
.
�
������.��
���(������ 
The relationship between permeability as the 

dependent variable and well logs as the independent 

variables is given by the below equation:  

( ) ( ) ( ) ( ) ( )( )1.748 0.00884115 0.132608 1.64347 385849 0.0057519310 DT Log LLD NPHI PEF GRPerm − + × − × + × + × + ×=  

Table 1: Used empirical equations and their parameters calibrated for the studied wells  

Name Equation Constant (A) Exponent (B) R
2
 of prediction 

Timur � = �� ��� !"##$
%
 6.758595 1.230943 0.6028 

Dual-Water � = &�. �'�. �� − )!"##)!"## *% 8.001080 1.176190 0.5787 
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Clustering Methods 

The aim of cluster analysis is to classify a dataset 

into groups that are internally homogeneous 

and externally isolated on the basis of a 

measure of similarity or dissimilarity among 

groups [12]. Clustering methods are widely used 

for electro-facies analysis and the prediction of 

petrophysical properties. By integrating clustering 

methods with intelligence techniques, some new 

methods such as SOM and MRGC were born 

[11,24]. In this study, we utilized two classic 

clustering methods, namely DC and AHC, and 

two new clustering methods, i.e. SOM and 

MRGC, to predict permeability from wireline 

logs. 

Predicting permeability by means of clustering 

methods is carried out in three steps: 

1) Partitioning log data of the train wells into 

somehow similar groups and determining the 

properties of each groups;  

2) Identifying clusters of test data using cluster 

properties, determined in the previous step;  

3) Predicting permeability in each cluster of the 

blind-test well by means of KNN method.  

Each clustering method tries to partition data 

into stable and homogeneous groups on the 

basis of its particular algorithm. Selecting the 

optimal number of clusters is important, because 

variation in the number of clusters strongly affects 

the results. There are no universal criteria for 

choosing the optimal number of clusters in the 

examined methods. Therefore, we tried 

different values for the number of clusters and 

chose the optimal values via trial and error. 

NPHI, DT, LLD, PEF, and GR were the inputs to all 

the clustering methods.  

MRGC is based on non-parametric K-nearest 

neighbor and graph data representation. MRGC 

is a tool which analyzes the structure of the 

complex data and partitions natural data groups 

into different shapes, sizes, and densities [24]. 

MRGC automatically determines the optimal 

number of clusters. We assigned 4 and 35 

respectively as the minimum and maximum of 

the desired clusters for MRGC. After executing 

MRGC, the log data of train wells were 

partitioned into six orders of clusters (5, 7, 10, 

14, 16, and 18 clusters). The highest R
2
 (0.5978) 

was obtained when MRGC model with 16 

clusters was used for permeability prediction 

(Figure 4-a).  

The SOM is a computational method for the 

visualization and analysis of high-dimensional data, 

especially experimentally acquired information 

[11]. We tested SOM networks with different 

dimensions to partition the datasets of train 

wells. Then, the permeability of the blind-test 

well was predicted using each model (Figure 4-

b). As shown in Figure 4-b, the optimal dimension 

of SOM network is 6×9, which gives the highest R
2
 

(0.6936) (Table 2 and Figure 5-f).  

Dynamic Clustering or k-means clustering is a 

non-hierarchical method to classify a dataset on 

the basis of a pre-defined number of clusters. 

The algorithm assigns each object into a cluster 

by iteration. It minimizes the sum of distance 

from each object to its cluster centroid, over all 

clusters. This algorithm moves objects between 

clusters until the sum cannot be decreased 

further [15]. This clustering method is suitable 

for datasets with a large amount of data. We 

examined different values for the number of 

clusters and predicted permeability in the blind-

test well. Permeability prediction on the basis of 

12 clusters (Figure 4-c) has the highest R
2
 (0.6631) 

among DC models with different numbers of 

clusters (Figure 5-g).  

Hierarchical clustering method partitions data 

over a variety of scales by creating a cluster tree 

or dendrogram [15]. Ascending hierarchical cluster 

(AHC) analysis is a statistical method for finding 

relatively homogeneous clusters of cases based 

on measured characteristics [14]. AHC produces 

different levels of clusters and user can choose 
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the most appropriate level for the dataset. 

Generally, clustering of a dataset can be 

executed by means of AHC in three steps: 1) 

measuring the distance between every pairs of 

objects in the dataset, 2) linking pairs of objects 

which are very close together, and 3) cutting the 

hierarchical tree into clusters [15]. Hierarchical 

trees were cut at different levels and the results 

showed that AHC model with 8 clusters has the 

highest R
2
 (Figure 4-d) among levels of clusters. 

AHC models with less or more than 6 clusters 

decrease the R
2
 value (Figure 5-h). Increasing 

the number of clusters does not make sharp 

changes in the results, because AHC combines 

relatively similar high order clusters and makes 

low order clusters. 

Artificial Intelligence Techniques 

ANN, fuzzy logic, and neuro-fuzzy are three 

artificial intelligence techniques which were 

used in this study to predict permeability from 

wireline logs. 

Neural network is a modeling technique which 

models systems in a brain-like way. The main 

feature of neural network is that it can learn the 

internal characteristics of a system by analyzing 

datasets. 
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Figure 4: Variation of R
2
 by changing the number of clusters for a) MRGC, b) SOM, c) DC, and d) AHC 
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In order to predict permeability using ANN, a 

back propagation neural network with two 

hidden layers have been designed. A trained 

network was used to predict the permeability of 

the test well. The R
2
 of the predicted permeability 

by means of neural network versus core 

permeability is 0.6279 (Table 2 and Figure 5-i).  

In this paper, a fuzzy approach proposed by 

Cuddy (2000) was utilized for permeability 

prediction [7]. This approach works by assigning 

a probability to the quality of the prediction 

from each log, then combines the probabilities, 

and predicts the most likely permeability [7]. We 

examined different numbers of classes and 

predicted the permeability for each case. Fuzzy 

model with 10 classes predicted permeability 

with the highest R
2
 (0.6275) among models with 

different numbers of classes (Figure 5-j). 

We used a locally linear neuro-fuzzy (LLNF) 

model which utilized local linear model tree 

learning algorithm (LOLIMOT) to predict the 

permeability. The fundamental approach to a 

locally linear neuro-fuzzy model is dividing the 

input space into small linear subspaces with 

fuzzy validity functions. Any produced linear 

part with its validity function is described as a 

fuzzy neuron. Thus the total model is a neuro-

fuzzy network with one hidden layer, and a 

linear neuron in the output layer, which simply 

calculates the weighted sum of the outputs of 

locally linear models [18]. By plotting the mean 

square error for the train and test data, we 

found that the optimal number of hidden layer 

neurons is 29, and constructed our neuro-fuzzy 

model with 29 neurons. The R
2
 of permeability 

prediction by means of neuro-fuzzy model was 

0.5900 (Figure 5-k). 

RESULTS AND DISCUSSION  

The prediction of permeability in un-cored wells 

is one of the difficult tasks in reservoir 

characterization, especially in heterogeneous 

and complex carbonates. Wireline logs are 

frequent and easy-to-obtain data, which are 

usually available in almost all the wells. We 

launched this study to examine four common 

approaches to predicting permeability, namely 

empirical methods, statistical analysis, clustering 

methods, and artificial intelligence techniques. 

The method with the best performance was 

selected to predict permeability in un-cored 

wells. The predicted permeability in one of the 

un-cored wells of the studied field was 

compared with MDT- (Modular Formation 

Dynamics Tester) derived permeability to ensure 

that the model worked properly.  

The first examined approach was empirical 

equation: Timur and Dual-Water models. The R
2
 

of the measured permeability versus predicted 

permeability using Timur and Dual-Water models 

are 0.6028 and 0.5787 respectively (Table 2). 

Even though the predicted permeability by 

means of Timur model is closer to the measured 

permeability than the one measured by Dual-

Water model, both models performed weakly 

(Figures 5-a and 5-b). In spite of our efforts to 

properly calibrate the parameters of these 

models, the permeability prediction was not 

satisfactory. Because of the heterogeneity of the 

reservoir, empirical equations failed to predict 

permeability properly. Usually the use of 

empirical equations is restricted to the region(s) 

where the models are developed for, and in 

different reservoirs, imperial models should be 

employed with caution.  

Regression analysis is simpler and easier to 

practice than other methods. The R
2
 values of 

permeability prediction by means of simple and 

multiple regressions are 0.4920 and 0.5279 

respectively (Table 2). The distribution shape of 

the predicted data via simple and multiple 

regressions are similar and both overestimate 

low permeabilities and underestimates high 

permeabilities.  
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Table 2: The R
2
 of the predicted versus measured permeability for all the used methods 

Type Empirical Regression Clustering Artificial Intelligence 

Model Timur 
Dual-

Water 
Simple Multiple 

MRGC 

16 

SOM 

6×9 

DC 

12 

AHC 

6 
ANN Fuzzy 10 Neuro-Fuzzy 

R
2
 0.6028 0.5787 0.4920 0.5279 0.5978 0.6936 0.6631 0.6391 0.6279 0.6275 0.5900 

The cross plots of permeability versus logs 

(Figure 2) show that there is not a simple and 

linear relationship between them. Conse-

quently, we cannot expect methods like 

empirical equations and regression analysis to 

explore complex relationships. Empirical 

methods simplify problems by reducing the 

number of variables, while different factors 

influence the permeability of reservoirs. In 

addition, regression methods tend to average 

data and ignore local variations, which are 

important in thin layered reservoirs. Figures (5-

c) and (5-d) present the plots of the predicted 

permeability versus the measured permeability 

by regression analysis. 

The aim of cluster analysis is to classify a dataset 

into groups that are internally homogeneous 

and externally isolated on the basis of a 

measure of similarity or dissimilarity between 

groups [12]. For proper permeability prediction 

in complex reservoirs, different criteria have 

been proposed for data classification such as 

reservoir layers, litho-facies, rock types, and 

hydraulic flow units. But in order to predict 

permeability from logs, methods should be 

employed which can handle the dimensionality 

and complexity of log data. Because of the 

variety of wireline logs and the heterogeneity of 

carbonates, it is usually difficult to easily 

recognize natural groups of data. 

Generally, clustering methods predict permeability 

better than the other examined methods. Even 

though they are not perfect, their results are 

acceptable. Selecting the optimal number of 

clusters is one of the important tasks in using 

clustering techniques, because variation in the 

number of clusters strongly affects the result of 

permeability prediction. In addition, there are 

no general criteria for choosing the optimal 

number of clusters in the examined methods. 

We examined different values for the number of 

clusters and predicted permeability in each case. 

Each method has its own value for the optimal 

number of clusters, e.g. the optimal number of 

clusters for MRGC, SOM, DC, and AHC are 16, 

54, 12, and 6 respectively. Predicting permeability 

on the basis of SOM has the highest R
2
 among the 

examined clustering methods, even though SOM 

is not much more robust than the other 

clustering methods; but, the results of the 

prediction are slightly comparable. However, 

SOM predicts low and high permeabilities better 

than the other methods. The performance of 

ANN and fuzzy logic for predicting permeabilities 

between 1 to 10 mD is acceptable, but both 

methods fail to predict permeabilities higher 

than 10 mD correctly. Contrary to our expectation 

neuro-fuzzy performance was weaker than the 

performance of ANN and fuzzy logic. Neuro-

fuzzy only predicts very high values (~100 mD) 

properly, but for the range 1 to 10 mD, at which 

most methods do well, neuro-fuzzy was 

disappointing. 
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Figure 5: Cross-plots of the measured permeability versus the predicted permeability by means of different 

methods, the methods and the R
2
 of the prediction are presented in the up-left box of each cross plot. 

The main preference of clustering methods is 

their ability to predict local variations. Most 

examined methods, especially regression and 

empirical methods, ignore local variations. These 

methods predict medium permeabilities well, but 

the prediction of extremes is associated with high 

errors. Statistically the number of samples in the 

extremes is low and most techniques cannot 

learn the pattern of these parts of data in 

training. Consequently, they tend to average the 

data and ignore local variations.  

The best performed method (SOM with 6×9 

clusters) was used to predict permeability in one 

of un-cored wells of the studied field. In this 

well, the permeability derived from MDT test 

was available. As it is clear in the right column of 

Figure 6, the predicted permeability matches 

well with MDT permeability. This interval 

comprises limestone with a limited amount of 

shale and its porosity is almost constant. Utilizing 

empirical methods which relate permeability to 

porosity leads to somehow constant predicted 

permeability, assuming that irreducible water 

saturation is also constant in this interval.  
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Figure 6: Wireline logs and predicted permeability in the blind test well; From left: Track 1) CGR and GR, 

Track 2) depth scale, Track 3) lithology, Track 4) resistivity logs, Track 5) NPHI, DT & RHOB, Track 6) predicted 

permeability by means of SOM 6×9 (solid line) and MDT permeability (dots), Track 7) predicted permeability 

by means of SOM 6×9 (solid line) and measured permeability (square). 
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CONCLUSIONS 

Numerous methods have been proposed by 

researchers to predict permeability in un-cored 

wells. Common approaches to predicting 

permeability are empirical models, regression 

analysis, clustering methods, and artificial 

intelligence techniques. We examined these 

methods to predict permeability in a carbonate 

reservoir. The study showed that among the 

examined methods, regression analysis was the 

worst and clustering techniques were the best in 

predicting permeability. Accordingly, among the 

four assessed clustering methods, SOM performed 

better and could properly predict local variations. 

Since the clustering methods classify the datasets 

into homogeneous subclasses and then predict the 

permeability in each sub-class, it is expected that 

the clustering methods perform better compared 

with the other methods which treat the dataset as 

a whole; in fact, in each subclass the relationship 

between permeability and the log responses is 

simpler.  

Artificial intelligence techniques were average in 

modeling permeability. Empirical equations and 

regression techniques were not capable of 

predicting permeability in the studied reservoir. 

The successful prediction of permeability in an 

un-cored well, confirmed by MDT, justified the 

capability of SOM as a clustering technique. 
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