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ABSTRACT 

The oxidative coupling of methane (OCM) performance over Na-W-Mn/SiO2 at elevated pressures 

has been simulated by adaptive neuro fuzzy inference system (ANFIS) using reaction data gathered 

in an isothermal fixed bed microreactor. In the designed neuro fuzzy models, three important 

parameters such as methane to oxygen ratio, gas hourly space velocity (GHSV), and reaction 

temperature were considered as inputs and methane conversion and the selectivity of product 

hydrocarbons (C2+) were chosen as outputs. Two five-layer neuro fuzzy models based on the 

partitioning algorithm were designed at each reaction pressure to predict the product 

hydrocarbons (C2+) selectivity and methane conversion separately as a linear combination of inputs 

by the optimal selection of number and type of the membership functions. Moreover, to evaluate 

the ability and accuracy of the developed neuro fuzzy models in the prediction of OCM reaction 

performance, the results of ANFIS models were compared with experimental data and artificial 

neural network outputs. The comparison was carried out by the calculation of some statistical 

parameters such as correlation coefficient (R
2
), mean squared error (MSE), and average relative 

deviation (ARD). The results show that there are excellent agreement between model predictions 

and experimental data and the proposed ANFIS model can predict the methane conversion and 

product hydrocarbons (C2+) selectivity under different operating conditions by high accuracy. 

Keywords: Oxidative Coupling of Methane, Neuro Fuzzy, Modeling, Conversion, Selectivity 

INTRODUCTION 

The catalytic oxidative coupling of methane 

(OCM) to higher hydrocarbons (especially 

ethane and ethylene) has been the subject of 

most challenging research in utilizing natural gas 

as a chemical feedstock. Among various cata-

lysts explored for methane coupling, the Mn/ 

Na2WO4/SiO2 catalyst, which was first studied by 

Fang et al. [1, 2], is considered to be one of the 

most promising catalysts. Therefore, it was 

extensively studied by several researchers [3-

10]. Most of the works on this catalyst were 

conducted under pressures below one atmos-

phere; however, for commercial applications 

and in order to reduce the size of the reactor, it 

is required to perform oxidative coupling of 

methane at higher pressures. Also, performing 
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OCM reaction at elevated pressures economic-

ally favors the product separation and energy 

saving [11]. Therefore, it is important to deter-

mine reaction conditions that optimize the 

performance of this process at an elevated pres-

sure. For this purpose, an appropriate kinetic 

model is required. In the case of Na-W-Mn/SiO2 

catalyst, most of the reported kinetic models in 

the literature [12, 13] were based on the gath-

ered reaction data at atmospheric total pres-

sure. On the other hand, the experimental 

results of this catalyst at higher pressures [14] 

show that, because of several secondary and 

crossing reactions, the OCM reactions at elevat-

ed pressures are more complex than those at 

atmospheric pressure. 

The application of the conventional modeling 

approach is not well suited for the OCM 

reactions at elevated pressures because of the 

lack of a suitable kinetic model. However, this 

problem can be overcome by using nonlinear 

calculation methods such as neuro fuzzy 

modeling technique. 

Neuro fuzzy modeling technique, a combination 

of neural network and fuzzy logic, benefits from 

the advantages of both neural network and 

fuzzy logic methods simultaneously. This 

technique has been used to model and control 

several processes such as CO2 capturing [15], 

waste water treatment [16], thermal cracking 

[17], wind turbine rotor [18], reactive distillation 

[19], sorption kinetics [20], gas solubility in 

polymers [21,22], ethanol distillation plant [23], 

solid oxide fuel cell [24], fatigue life of 

composite [25], fault detection [26,27], and 

steam cracking [28]. Nevertheless, there is no 

reported work yet in the literature on the 

application of neuro fuzzy in modeling OCM 

reaction especially at elevated pressures. 

In the present study, ANFIS model is proposed 

to simulate OCM reaction in an isothermal 

microreactor bed at the elevated pressures to 

predict the conversion of methane and the 

selectivity of product hydrocarbons (C2+) at 

different operating conditions. For designing a 

proper structure, the optimum number and 

shape of the membership function must be 

determined. Then, the results of the ANFIS 

model have been compared with experimental 

data by calculating some statistical parameters. 

In addition, a comparison between the ANFIS 

results and the artificial neural network 

predictions, which were published earlier [29], 

was made in this study.  

EXPERIMENTAL WORKS 

Catalyst Preparation 

The SiO2 was first prepared by the co-

precipitation method [30]. The calculated 

amounts sodium silicate (Na2SiO4) and sulfuric 

acid (H2SO4) were added to 400 ml distilled 

water at 80 °C with a pH of 8 at constant stirring 

to produce a thick paste. The paste was spread 

and dried overnight at 100 °C. Then, it was 

calcinated in air for 5 hr at 450 °C. 

The Na-W-Mn/SiO2 catalyst was prepared by a 

two-step incipient wetness impregnation 

method. An aqueous solution with an 

appropriate concentration of Mn(NO3)2.6H2O 

was added to the prepared SiO2 support and 

then evaporated to dryness and dried in air at 

ambient temperature for 24 hr and then 100 °C 

for a day. After that, Na2WO4.2H2O solution 

having an appropriate concentration was added 

to the prepared material and followed by drying 

as described above. The catalyst was then 

calcinated at 850 °C for 15 hr. The resulting 

powder was pelletized, crushed, and sieved to 

30-35 mesh. 

The atomic absorption spectrophotometry (AAS) 

(A-Analyst 200) and inductively coupled plasma 

(ICP) (Wear Metal Analyzer-Plasma 400) analysis 

show that the weight percentages of the 

components in the prepared catalyst are 1.4 wt.% 
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Na, 2.1 wt.% W, 1.5 wt.% Mn over SiO2 support. 

Experimental Setup 

A micro-catalytic fixed bed reactor, made of 

quartz, with an inner diameter of 10 mm located 

in a vertical furnace with two electric heaters 

was used to measure the performance of the 

catalyst under various conditions (Figure 1). The 

diameter of the pre-catalytic and post-catalytic 

zone was reduced to 6 mm and was filled with 

quartz chips (mesh 20/25) in order to minimize 

the contribution of any gas-phase reactions. 0.4 

grams catalyst was placed at the hottest part of 

the reactor. The reaction temperature was meas-

ured using Ni/Cr-Ni/Al thermocouple within 

quartz thermo-well, which was inserted into the 

center of catalyst bed. In all the experiments, the 

reactant gases, namely CH4 and O2, were co-fed 

into the reactor and their flow rates were con-

trolled with mass flow controllers. After re-

moving water by condensation at -5°C, the 

reactor effluent gases were analyzed by an 

online gas chromatograph with thermal conduc-

tivity detector for detecting O2, CH4, CO, CO2, 

C2H4, and C2H6 and flame ionization detector 

was used for detecting the higher hydrocarbons. 

The pressure of system was controlled by using 

a pressure controller. 

 
Figure 1: A schematic of the quartz fixed bed reactor 

The methane conversion and selectivity of 

product hydrocarbons (C2+) are calculated using 

the following equations: 
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where, CO, CO2, and Cn are the moles of CO, CO2, 

and Cn hydrocarbon respectively.  

Table 1 summarizes the overall range of the 

experimental data used in this work for the 

development of ANFIS models.  

Table 1: Experimental data ranges used in this study 

for the development of ANFIS models 

Range Variable 

675-750 T (°C) 

12750-15790 Feed’s GHSV (hr
-1

) 

3.15-6.0 Feed’s CH4/O2 molar ratio 

Adaptive Neuro Fuzzy Inference System 
(ANFIS) Model 

The ANFIS, first introduced by Jang in 1992 [31], 

is a Takagi-Sugeno type fuzzy inference system 

with single output in which the output of rules is 

a constant term or a linear combination of input 

variables. 

ANFIS is a flexible and powerful modeling 

technique in comparison with other traditional 

modeling methods due to its learning ability 

from experiments without the necessity of 

adopting precise quantitative analyses between 

input and output parameters.   

The principle of neuro fuzzy modeling technique 

is learning information from train data using 

neural network concept and computing the best 

structure of membership functions (including 

number and type) in order to find an input-

output mapping based on the fuzzy if-then rules 
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[32, 33]. A basic ANFIS structure with two inputs 

(x, y) and one output (f) is demonstrated in 

Figure 2.  

 

Figure 2: An ANFIS structure 

For a first-order Takagi-Sugeno fuzzy model, a 

common if-then rule set with two members is as 

follows:  

1 1

1 1 1 1

Rule 1: is and isIf x A y B

then f p x q y r= + +
 

2 2

2 2 2 2

Rule 2 : is and isIf x A y B

then f p x q y r= + +
 

As shown in Figure 2, ANFIS has five layers and 

all nodes in a layer have similar function type as 

described below [31, 32]: 

Layer 1: Every node in this layer is an adaptive 

node with a node function given by: 

( )1, , 1, 2
ii AO x iµ= =  (3) 

where, x and O1,i are the input to the first node 

and membership function respectively.  

There are several types of membership func-

tions with a set of parameters. Some of the 

most widely used membership functions are the 

triangular, Gaussian, and generalized bell types 

which are respectively defined as follows: 
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where, a, b, c, d, and σ are premise parameters 

of membership functions and are changing 

continuously in the training step to minimize the 

differences between the target values of the 

output and the model predictions.  

Layer 2: Every node in this layer is a fixed node 

labeled as П, the output of which is the product 

of all incoming signals and represents the firing 

strength of a fuzzy rule as: 

( ) ( )2, , 1, 2
i ii i A BO w x x iµ µ= = × =  (8) 

Layer 3: Every node in this layer is a fixed node 

labeled N. The i
th

 node calculates the ratio of the 

rule’s firing strength relative to the sum of all 

rules’ firing strengths: 

3,
1 2

, 1, 2i
i i

w
O w i

w w
= = =

+
 (9) 

The outputs of this layer are called “normalized 

firing strengths.” 

Layer 4: Every node (i) in this layer is an adaptive 

node with a node function given by: 

( )4, , 1, 2i i i i i i iO w f w p x q y r i= = + + =  (10) 

where, w� i is a normalized firing strength from 

layer 3 and {pi, qi, ri} is the parameter set of this 

node. Parameters in this layer are called “conse-

quent parameters.” 

Layer 5: The single node in this layer is a fixed 

node labeled ∑ which calculates the overall 

output as the summation of all incoming signals: 
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5,
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From the above mentioned ANFIS structure, the 

output f can be defined as: 

( ) ( )

1 2
1 2

1 2 1 2

1 1 1 1 2 2 2 2

w w
f f f

w w w w

w p x q y r w p x q y r

= +
+ +

= + + + + +
 (12) 

As mentioned earlier, p1, p2, q1, q2, r1, and r2 are 

the linear consequent parameters. Also, w1 and 

w2 are firing strength of fuzzy rules and w�1 and 

w�2 are normalized firing strength of fuzzy rules.   

A hybrid learning algorithm which is a 

combination of two passes is used to train ANFIS 

by calculating the optimum value of model 

parameters [34]. In the forward pass, node 

outputs go forward until layer 4 and the 

consequent parameters are identified by the 

least square technique. In the backward pass, 

the error rates propagate backward and the 

gradient descent technique is used to update 

the premise parameters. 

The accuracy of ANFIS models was evaluated by 

calculating three statistical variables such as 

correlation coefficient (R
2
), mean squared error 

(MSE), and average relative deviation (ARD), 

which are calculated by the following equations: 
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where, yexp and ycal are the experimental and 

model predicted values;  y�
exp

 is the mean of 

experimental value and n is the total number of 

data points. The optimal value for R
2
, MSE, and 

ARD are equal to 1.0, 0.0, and 0.0 respectively. 

As mentioned earlier, unlike artificial neural 

network, ANFIS only supports single output as 

the weighted average of each rule's output. 

Therefore, in this study, two inference systems 

were developed at each pressure using Fuzzy 

Logic Toolbox of MATLAB software package 

(version 7.6.0 (R2008a)) in order to predict the 

methane conversion and C2+ selectivity under 

different operating conditions. In these designed 

models, three independent variables such as 

methane to oxygen molar ratio (CH4/O2), gas 

hourly space velocity (GHSV), and reaction 

temperature were selected as input parameters. 

RESULTS AND DISCUSSION 

For developing ANFIS model, the experimental 

data were partitioned into training and testing 

subsets to estimate model parameters and 

evaluate the generalization ability of model and 

the validity of the estimated model. In this 

study, the numbers of experimental data used 

as training and testing data set at each pressure 

level were 140 and 55 respectively. In the 

selection of the training subset, the important 

issue is that the training data set should be the 

representative of the whole experimental data. 

This means that the samples in the training 

subset should be (evenly) spread over the 

expected range of data variability. 

To determine the best structure of ANFIS model, 

the optimum type and number of membership 

functions must be determined. For this purpose, 

eight different ANFIS structures were produced 

to predict OCM reaction performance using four 

different types and two different numbers of the 

membership functions. The triangular, Gaussian, 

trapezoidal, and generalized bell types of 

membership functions were used to construct 

different architectures of ANFIS. In addition, the 

numbers of membership functions were chosen 

2-2-2 and 3-2-3 corresponding to the inputs 

CH4/O2 ratio, GHSV, and temperature respect-

tively. 

The comparison of the performance of the 
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various architectures of neuro fuzzy model to 

predict methane conversion and C2+ selectivity 

at different pressures is summarized in Table 2. 

For each structure, the value of the correlation 

factor has been presented. The optimal struc-

tures of ANFIS were selected based on the 

highest R
2
 value for train data set. 

Based on the results listed in Table 2 and the 

fitness of the developed models, the optimum 

architectures of ANFIS model to predict the out-

put parameters at each working pressure are as 

follows: 

• To predict methane conversion at the all 

investigated pressure levels, the optimum 

numbers of membership function are three, 

two, and three for CH4/O2 ratio, GHSV, and 

temperature respectively. Moreover, the 

best types of membership function are the 

Gaussian, triangular, and bell shape at 

pressures of 200, 300, and 400 kPa respect-

tively.  

• To predict C2+ selectivity at pressures of 

300 and 400 kPa, the optimum numbers of 

membership function are three, two, and 

three for CH4/O2 ratio, GHSV, and tempera-

ture respectively. However, these values 

are two for all the input parameters at a 

reaction pressure of 200 kPa. At reaction 

pressures of 300 and 400 kPa, the Gaussian 

type is the best choices for membership 

function, while at a working pressure of 

200 kPa, the triangular type is the best 

option. 

The statistical results and optimum structure of 

the developed neuro fuzzy model to predict 

methane conversion and C2+ selectivity at working 

pressures for training and test data sets are 

demonstrated in Table 3. It can be seen that the 

statistical variables of the developed neuro fuzzy 

model have acceptable values. 

Table 2: Comparisons between different ANFIS structures to predict methane conversion and C2+ selectivity 

at different pressures 

M.F. Type and No. 
P=200 kPa P=300 kPa P=400 kPa 

4CH%X  
2C%S

+
 

4CH%X  
2C%S

+
 

4CH%X  
2C%S

+
 

Triangular 2-2-2 0.9130 0.9656 0.9544 0.9253 0.9614 0.9715 

Triangular 3-2-3 0.9451 0.9416 0.9999 0.9324 0.9358 0.9663 

Gaussian 2-2-2 0.9672 0.9264 0.9741 0.9658 0.9437 0.9420 

Gaussian 3-2-3 0.9987 0.9319 0.9418 0.9971 0.9682 0.9984 

Bell shape 2-2-2 0.9456 0.9173 0.9326 0.9891 0.9455 0.9763 

Bell shape 3-2-3 0.9218 0.9042 0.9817 0.9713 0.9999 0.9806 

Trapezoidal 2-2-2 0.9167 0.9536 0.9762 0.9776 0.9864 0.9467 

Trapezoidal 3-2-3 0.9237 0.9287 0.9801 0.9602 0.9716 0.9348 

Table 3: Statistical results and final structure of the developed neuro fuzzy model to predict methane 

conversion and C2+ selectivity of OCM reaction 

Parameter 
P=200 kPa P=300 kPa P=400 kPa 

4CH%X  
2C%S

+
 

4CH%X  
2C%S

+
 

4CH%X  
2C%S

+
 

M.F. No. 3-2-3 2-2-2 3-2-3 3-2-3 3-2-3 3-2-3 

M.F. Type Gaussian Triangular Triangular Gaussian Bell Shape Gaussian 

R
2
 (Train) 0.9987 0.9656 0.9999 0.9971 0.9999 0.9984 

MSE (Train) 0.2324 0.7254 0.0077 0.1086 0.0053 0.0486 

ARD (Train) 1.1277 0.8973 0.1848 0.1798 0.1356 0.1036 

R
2
 (Test) 0.9952 0.9544 0.9883 0.9763 0.9981 0.9789 

MSE (Test) 0.7797 1.1241 1.5337 1.2122 0.1397 0.5317 

ARD (Test) 3.9347 1.2746 5.7288 1.0322 1.1040 0.6516 
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The neuro fuzzy models developed in this study 

and artificial neural network published earlier 

[29] were compared for their fitness accuracy 

and predictive capability. The predicted average 

values of R-square, MSE, and ARD by neuro 

fuzzy and artificial neural network models for 

test data set are presented in Tables 4 and 5. As 

indicated in these tables, the values of all 

statistical parameters including R
2
, MSE, and 

ARD for neuro fuzzy model are better than those 

for artificial neural network. For example, the 

values of R
2
, MSE, and ARD for neuro fuzzy to 

predict methane conversion at a working 

pressure of 200 kPa are 0.9952, 0.7797, and 

3.9347 respectively, while they are 0.989, 2.429, 

and 13.754 for neural network. Moreover, these 

parameters to predict C2+ selectivity at a pres-

sure of 400 kPa are 0.9789, 0.5317, and 0.6516 

respectively for neuro fuzzy and 0.976, 0.861, 

and 1.05 for neural network. Therefore, it can 

be concluded that the neuro fuzzy model fitted 

the experimental data under different operating 

conditions with high accuracy compared to arti-

ficial neural network method. 

Table 4: Comparison of the performance of neuro 

fuzzy and artificial neural network to predict 

methane conversion 

Parameter P=200 kPa P=300 kPa P=400 kPa 

NF ANN NF ANN NF ANN 

R
2
 (Test) 0.9952 0.989 0.9883 0.948 0.9981 0.998 

MSE (Test) 0.7797 2.429 1.5337 11.07 0.1397 0.209 

ARD (Test) 3.9347 13.754 5.7288 19.86 1.1040 1.479 

Table 5: Comparison of the performance of neuro 

fuzzy and artificial neural network to predict C2+ 

selectivity 

Parameter 
P=200 kPa P=300 kPa P=400 kPa 

NF ANN NF ANN NF ANN 

R
2
 (Test) 0.9544 0.942 0.9763 0.893 0.9789 0.976 

MSE (Test) 1.1241 1.86 1.2122 6.896 0.5317 0.861 

ARD (Test) 1.2746 1.657 1.0322 3.134 0.6516 1.05 

Figures 3 to 5 represent the predictions of 

methane conversion and C2+ selectivity at work-

ing pressures (200, 300, and 400 kPa) by ANFIS 

models plotted against experimental values for 

testing data set. The results confirm that the 

developed ANFIS models can predict methane 

conversion and C2+ selectivity of OCM reaction 

by high accuracy and the differences between 

model estimations and experimental results are 

almost negligible under different operating con-

ditions. 

 

Figure 3: Comparison of experimental data with 

ANFIS prediction (test data set) for (a) CH4 

conversion and (b) C2+ selectivity at P=200 kPa 

After developing optimum ANFIS models to 

simulate OCM reaction, the effects of operating 

conditions such as methane to oxygen ratio, gas 

hourly space velocity, reaction temperature, and 

pressure on the methane conversion and selec-

tivity of C2+ were investigated by changing one 

variable while the other parameters were kept 

constant.  
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Figure 4: Comparison of experimental data with 

ANFIS prediction (test data set) for (a) CH4 

conversion and (b) C2+ selectivity at P=300 kPa 

The effect of reaction temperature on the 

methane conversion and C2+ selectivity at 

different methane to oxygen ratios, calculated 

by ANFIS model, is demonstrated in Figures 6 

and 7. It is obvious that by increasing 

temperature from 675 °C to 705 °C at CH4/O2 =6, 

the methane conversion and C2+ selectivity 

increase from 3.72% and 53.10% to 20.32% and 

71.88% respectively. By raising temperature 

beyond 705 °C, the methane conversion and C2+ 

selectivity remain constant. This behavior is 

attributed to the fact that the inlet oxygen is 

completely consumed at a temperature about 

705 °C. Therefore, in the absence of oxygen, 

undesired oxidation reactions cannot happen 

and increasing temperature further has no 

effect on the performance of OCM reaction.  

 

 
Figure 5: Comparison of experimental data with 

ANFIS prediction (test data set) for (a) CH4 

conversion and (b) C2+ selectivity at P=400 kPa 

By increasing methane to oxygen ratio at a 

constant temperature, methane conversion 

decreases, whereas C2+ selectivity increases. This 

is because decreasing the oxygen concentration 

(increasing of methane to oxygen ratio) in the 

feed can result in the low deep oxidation of 

ethane and ethylene, which increases the C2+ 

selectivity. For example, at T=685 °C, by raising 

methane to oxygen ratio from 4 to 6, the 

methane conversion drops from 25.66% to 

14.62%, whereas C2+ selectivity increases from 

56.23% to 64.13%. 

The effect of methane to oxygen molar ratio in 
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investigated. 

Figure 6: Effect of reaction temperature on the 

methane conversion at different methane to oxygen 

ratios (operating conditions: P=400 kPa and GHSV = 

15500 hr
-1

) 

Figure 7: Effect of reaction temperature on C2+ 

selectivity at different methane to oxygen ratios 

(operating conditions: P=400 kPa and GHSV=15500 

hr
-1

) 

As shown in Figures 8 and 9, by increasing 

methane to oxygen ratio at P=400 kPa, the 

methane conversion decreases from 35.59% to 

19.86%, whereas C2+ selectivity increases from 

62.99% up to 74.68%. The results demonstrate 

that under an oxygen-rich atmos-phere (low 

methane to oxygen ratio), the produced C2+ 

hydrocarbons can be more easily converted to 

COx. 

At a constant value of methane to oxygen ratio, 

by increasing pressure from 200 to 400 kPa, 

methane conversion and C2+ selectivity decrease 

simultaneously. These results prove that pres-

sure has a negative effect on both C2+ selectivity 

and methane conversion. This behavior may be 

attributed to the high contribution of undesired 

gas phase reactions at higher pressures.   

Figure 8: Effect of methane to oxygen molar ratio on 

the methane conversion at different pressures 

(operating conditions: T=750 °C and GHSV=15750  

hr
-1

) 

Figure 9: Effect of methane to oxygen molar ratio on 

C2+ selectivity at different pressures (operating 

conditions: T=750 °C and GHSV=15750 hr
-1

) 

The interaction effects of gas hourly space 

velocity and working pressure on the methane 

conversion and C2+ selectivity are presented in 

Figures 10 and 11. The results indicate that at a 

constant pressure, by increasing GHSV, methane 

conversion decreases slightly, while the selec-

tivity of C2+ rises to a maximum value and then 

decreases. The decreasing of methane conver-
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sion by increasing GHSV is due to short contact 

time in the reactor. The variation of C2+ 

selectivity versus GHSV can be related to the 

complex reaction between surface catalytic 

reactions, the homogenous gas phase reactions, 

and their different time scales. As seen in these 

figures, by increasing pressure when GHSV 

remains constant, methane conversion and C2+ 

selectivity, similar to Figures 8 and 9, decrease. 

 

Figure 10: Effect of gas hourly space velocity on the 

methane conversion at different pressures 

(operating conditions: T=720 °C and CH4/O2=6) 

 

Figure 11: Effect of gas hourly space velocity on C2+ 

selectivity at different pressures (operating 

conditions: T=720 °C and CH4/O2=6) 

Finally, the influence of methane to oxygen ratio 

at different gas hourly space velocities as two 

important parameters on the performance of 

OCM reaction is shown in Figures 12 and 13. It 

can be seen that an increase in methane to 

oxygen ratio at a constant GHSV, reduces 

methane conversion, whereas increases C2+ 

selectivity. At a constant ratio of methane to 

oxygen, by increasing GHSV, methane conver-

sion falls, whereas C2+ selectivity increases at 

first and then drops. The reasons for these 

results are described above. 

 

Figure 12: Effect of methane to oxygen ratio on the 

methane conversion at different GHSV (operating 

conditions: P=400 kPa and T=750 °C) 

 

Figure 13: Effect of methane to oxygen ratio on C2+ 

selectivity at different GHSV (operating conditions: 

P=400 kPa and T=750 °C) 

CONCLUSIONS 

In this study, neuro fuzzy technique was used to 

simulate OCM reaction and predict methane 

conversion and C2+ selectivity at elevated 

pressures. Two ANFIS models were designed at 
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each pressure based on the partitioning 

algorithm with considering methane to oxygen 

molar ratio, temperature, and gas hourly space 

velocity as the input parameters in order to 

predict methane conversion and C2+ selectivity 

separately.  

The accuracy of developed ANFIS models was 

evaluated by calculating some statistical 

parameters and compared with artificial neural 

network results published elsewhere. It was 

found out that neuro fuzzy model had higher 

accuracy than artificial neural network method. 

The neuro fuzzy showed an improvement in R
2
, 

MSE, and ARD parameters in comparison with 

artificial neural network. For example, the neuro 

fuzzy model could enhance R
2
, MSE, and ARD 

values of the neural network model for methane 

conversion at a pressure level of 300 kPa about 

4.25%, 86.15%, and 71.15% respectively. Addi-

tionally, the improvements in R
2
, MSE, and ARD 

values for C2+ selectivity at the same pressure 

were 9.33%, 82.42%, and 67.06% respectively. 

The results show that, at a constant CH4/O2 

ratio, higher temperatures increase methane 

conversion and C2+ selectivity. Moreover, at a 

constant temperature, increasing CH4/O2 ratio 

has a decreasing effect on the methane conver-

sion but a rising effect on the C2+ selectivity. 

Furthermore, the interaction effects of methane 

to oxygen ratio and working pressure were 

studied simultaneously. It can be concluded that 

by increasing pressure at a constant CH4/O2 

ratio, both methane conversion and C2+ selec-

tivity decrease. An increase in CH4/O2 ratio at a 

constant pressure reduces methane conversion 

while increases C2+ selectivity. When all the 

operating conditions are kept constant, raising 

GHSV slightly reduces methane conversion, 

whereas C2+ selectivity increases at first and 

then decreases by increasing GHSV to more than 

13800 hr
-1

. 

Therefore, it can be concluded that ANFIS is a 

powerful technique to predict the methane 

conversion and C2+ selectivity of OCM reaction in 

a wide range of operating conditions and there 

are very good agreement between the model 

predictions and the experimental data. 

NOMENCLATURE 

ARD Average relative deviation 

a, b, c, d, σ Premise parameters of 

membership functions 

CH4/O2 Methane to oil molar ratio 

f Model output 

GHSV Gas hourly space velocity 

MSE Mean squared error 

p Pressure 

pi, qi, ri Linear consequent parameters 

R
2
 R-square 

SC2+ Selectivity of product 

hydrocarbons 

T Temperature 

w Firing strength 

��  Normalized firing strength 

XCH4 Methane conversion 

x, y Model inputs 

yexp Experimental value 
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