
Abstract
Surfactant-polymer (SP) flooding is recognized as an effective chemical enhanced oil recovery (EOR) method, where 
accurate prediction of oil recovery factor (RF) and net present value (NPV) is vital for field development planning 
and economic analysis. This study systematically evaluates a range of supervised machine learning algorithms—in-
cluding CatBoost, artificial neural networks (ANN), XGBoost, LightGBM, and gradient boosting regressor (GBR)—
for forecasting RF and NPV based on experimental SP flooding data. Baseline model results were established using 
default hyperparameters, followed by comprehensive two-stage hyperparameter tuning using grid search and Bayes-
ian optimization with Optuna, along with five-fold cross-validation to ensure robustness. CatBoost and ANN con-
sistently achieved the highest predictive accuracy. In addition, ensemble stacking was then performed by combining 
top-performing models, further enhancing prediction reliability and generalization. Additional post-processing using 
quantile adjustment (linear residual correction) addressed residual bias and improved calibration between predict-
ed and observed values. Furthermore, model performance was benchmarked using standard statistical metrics and 
comparative graphical analysis. Also, the results demonstrate that integrating well-established supervised learning 
methods with systematic optimization, stacking, and output calibration offers a robust and practical framework for 
accurate prediction of SP flooding outcomes. Moreover, this approach provides valuable support for data-driven deci-
sion-making in EOR project design and evaluation. Furthermore, the proposed framework achieved strong predictive 
accuracy in the all-stacking ensemble with cross-validation, yielding an R² of 0.978 and AAPRE of 2.71 for recovery 
factor, and an R² of 0.944 and AAPRE of 6.18 for net present value. Ultimately, then applying quantile adjustment 
to the all-stacking ensemble, the performance remained competitive, with an R² of 0.964 and AAPRE of 3.61 for 
recovery factor, and an R² of 0.924 and AAPRE of 7.94 for net present value, further demonstrating the robustness 
of the approach.

Keywords: Surfactant-polymer Flooding; Oil Recovery Factor; Net Present Value; Supervised Machine Learning; 
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Introduction
Increasing oil recovery from reservoirs remains a 
strategic and technically challenging task in petroleum 
engineering, especially as a significant fraction of 
hydrocarbon reserves persists as residual oil after 
conventional waterflooding [1]. To address this, 
advanced Enhanced Oil Recovery (EOR) techniques 
have been developed, with surfactant–polymer (SP) 
flooding recognized as a highly promising approach 
due to its dual capability of lowering interfacial tension 
and increasing the viscosity of the displacing phase, 
thereby mobilizing trapped oil and improving recovery 
efficiency.
However, designing and optimizing SP flooding 
processes is challenging due to reservoir heterogeneity, 

fluid-rock interactions, and operational complexities. 
Although numerical simulators like UTCHEM are 
widely used for analysis, they are less practical for 
preliminary studies because of high computational costs, 
parameter sensitivity, and large data requirements [2]. 
Consequently, data-driven modeling and the adoption 
of machine learning (ML) and artificial intelligence 
(AI) algorithms have gained significant momentum in 
petroleum engineering research and practice [3,4].
In recent years, numerous studies have explored ML-
based prediction of key SP flooding metrics, such as 
recovery factor (RF) and net present value (NPV). For 
instance, Karambeigi et al. (2011) pioneered the use of 
multilayer perceptron (MLP) neural networks trained on 
UTCHEM simulation data, achieving mean absolute 
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relative errors of 2.12% for RF and 4.6% for NPV, thus 
validating ANN models as efficient surrogates for numerical 
simulation and scenario optimization [3]. Subsequently, 
Kamari et al. (2016) introduced LSSVM models optimized 
with Coupled Simulated Annealing (CSA), further reducing 
absolute prediction errors to 1.9% for RF and 3.1% for NPV 
and demonstrating via sensitivity analysis that surfactant 
concentration and slug size were the most influential 
variables—though increased surfactant concentration could 
negatively affect NPV due to chemical costs [5].
Advanced architectures such as cascade neural networks and 
gradient boosting (GBDT), as demonstrated by Larestani et 
al. (2022), have achieved even lower errors (0.66% for RF 
and 1.95% for NPV), showcasing the potential of ensemble 
and deep learning approaches to significantly reduce 
prediction errors, albeit at the expense of increased data 
and computational requirements [4]. In another important 
contribution, Hou et al. (2009) combined genetic algorithms 
with SVM to predict oil production and water-cut curves 
with less than 3% error, even for field cases with limited data, 
affirming the robustness of such hybrid approaches [6].
Methodologically, most of these studies have relied on 
complex or hybrid models, prioritizing accuracy but raising 
questions regarding their practical implementation under 
computational or data constraints. In 2013, Al-Dousari and 
Garrouch provided a different perspective by defining 18 
dimensionless input groups and training a three-hidden-
layer ANN to predict oil recovery with less than 3% error, 
emphasizing the value of rapid reservoir screening and 
preliminary assessment [1]. Moreover, complementary 
research by Zerpa et al. in 2005 and Dang et al. in 2018 
explored field-scale numerical optimization via surrogate 
models, balancing accuracy with operational feasibility in 
the presence of geological uncertainty [2,7].
Nonetheless, critical challenges such as optimal model 
structure selection, input variable identification, limited 
sample sizes, overfitting, and sensitivity to outliers continue 
to complicate the adoption of ML models in practical EOR 
scenarios. Furthermore, while high-accuracy results are often 
achieved by leveraging complex architectures or ensemble 
approaches (e.g., stacking), a systematic evaluation of 
whether simpler ML models, when enhanced with advanced 
validation techniques (such as cross-validation and stacking), 
can approach the accuracy of their complex counterparts 
remains largely unaddressed.
This study aims to fill this gap by evaluating the performance 
of ten widely-used simple ML models for predicting RF and 
NPV, using high-quality numerical laboratory data for SP 
flooding. Furthermore, by employing advanced validation 
techniques, including stacking and cross-validation, this 
study investigates whether the predictive accuracy of simple 
models can be enhanced without resorting to deep or hybrid 
architectures. Moreover, the results contribute both to 
bridging the literature gap and to offering practical guidelines 
for ML model selection in EOR projects, particularly under 
resource limitations.

Material and Methods
This research aims to thoroughly investigate the predictive 
capabilities of a broad spectrum of supervised machine 

learning (ML) algorithms for forecasting two critical metrics 
in surfactant-polymer (SP) flooding: oil recovery factor 
(RF) and net present value (NPV). In addition, the ultimate 
goal is to determine whether conventional ML models, 
optimized with modern hyperparameter tuning strategies and 
ensemble methods, can match or even surpass the predictive 
performance of deep learning and hybrid models previously 
reported in literature.

Data Collection and Preprocessing
This study uses a laboratory dataset from Prasamphanich (2009), 
later curated by Karambeigi et al. (2011) [4,8]. Both studies 
are established benchmarks for enhanced oil recovery (EOR) 
machine learning research. Moreover, this dataset consists of 
202 independent SP flooding experiments, where each record 
includes seven critical input variables capturing essential 
operational and reservoir conditions—such as polymer drive 
salinity, polymer and surfactant concentrations, slug sizes, and 
permeability ratios—selected for their documented relevance 
and predictive influence on chemical EOR outcomes [4]. In 
addition, the response variables of interest are the oil recovery 
factor (RF, %) and the net present value (NPV, $MM), both 
of which represent key technical and economic metrics in SP 
flooding performance assessment.
For robust and unbiased model evaluation, the full dataset 
was randomly stratified into a training set (161 samples, 
approximately 70%) and a test set (41 samples, 30%). 
Furthermore, prior to model development, all input features 
were standardized using the Standard Scaler to ensure 
uniform variable scaling and stable model convergence. In 
addition, the summary of the dataset’s key features, their 
definitions, and statistical properties is provided in the 
relevant table within the Data section (see Table 1) and was 
constructed to closely follow the conventions established in 
the referenced benchmark studies [8,4].
Supervised Machine Learning Models
A comprehensive panel of ten supervised learning models 
was selected:
Decision Tree (DT)
Random Forest (RF)
Extra Trees (ET)
AdaBoost
Gradient Boosting Regressor (GBR)
XGBoost
LightGBM
CatBoost
Support Vector Regression (SVR)
Artificial Neural Network (ANN, MLP-based)
The rationale for this diverse selection is rooted in their 
proven effectiveness for capturing complex non-linearities in 
EOR modeling [3,9]. Each algorithm brings unique strengths 
in terms of interpretability, handling of feature interactions, 
and regularization, offering a holistic landscape of classical 
ML performance.
CatBoost
CatBoost, short for Categorical Boosting, is a high-
performance gradient boosting library developed by Yandex 
that is particularly adept at modeling tabular data. What sets 
CatBoost apart is its innovative use of ordered boosting and 
its native handling of categorical variables. 
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Table 1 Full description of the gathered dataset.
Parameters Unit mean std min 25% 50% 75% max
Surfactant slug size PV 0.177228 0.072253 0.097 0.097 0.178 0.259 0.259
Surfactant concentration Vol. fraction 0.017748 0.011192 0.005 0.005 0.0175 0.03 0.03
polymer concentration in surfactant slug wt % 0.176629 0.066828 0.1 0.1 0.175 0.25 0.25
polymer drive size PV 0.481748 0.143979 0.324 0.324 0.478 0.648 0.648
polymer concentration in polymer drive wt % 0.148158 0.044381 0.1 0.1 0.147 0.2 0.2
Kv/Kh ratio - 0.128515 0.107642 0.01 0.01 0.13 0.25 0.25
Salinity of polymer drive Meq/ml 0.348599 0.044729 0.3 0.3 0.349 0.4 0.4
Recovery factor (RF) % 39.66802 9.263624 14.82 33.9225 41.865 46.635 56.99
Net present value (NPV) $ MM 4.451225 1.533972 1.065 3.37235 4.38985 5.55675 8.1017

Unlike many other boosting algorithms, CatBoost applies 
an ordered boosting scheme that reduces prediction shift 
and target leakage, contributing to better generalization, 
especially on smaller datasets. Additionally, CatBoost’s 
implementation of symmetric (oblivious) trees and its 
advanced regularization mechanisms make it highly resistant 
to overfitting. These architectural choices allow the model 
to efficiently process both numerical and categorical inputs 
without the need for extensive preprocessing or encoding. 
In the present study, CatBoost yielded the highest individual 
predictive accuracy for both RF and NPV, confirming its 
reputation as one of the most effective machine learning tools 
for complex regression tasks [10].
LightGBM
LightGBM (Light Gradient Boosting Machine) is a tree-
based boosting framework designed for speed and efficiency, 
developed by Microsoft. Moreover, its standout features 
include Gradient-based One-Side Sampling (GOSS), 
which accelerates training by focusing on samples with 
the largest gradients, and Exclusive Feature Bundling 
(EFB), which reduces feature dimensionality by bundling 
mutually exclusive features. Furthermore, unlike many 
boosting algorithms that grow trees level-wise, LightGBM 
uses a leaf-wise strategy, selecting the leaf with the largest 
loss reduction at each split. This approach can significantly 
improve model accuracy, particularly on large and complex 
datasets. However, it also increases the risk of overfitting 
if not properly regularized. In this research, LightGBM 
demonstrated outstanding computational performance while 
consistently ranking among the top models in terms of 
predictive power for both target variables [11].
Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs), inspired by the biological 
structure of the human brain, are powerful universal function 
approximators. In this study, an ANN was implemented in 
the form of a multi-layer perceptron (MLP), which consists 
of one input layer, one or more hidden layers, and an output 
layer. Each neuron applies a weighted linear transformation 
followed by a non-linear activation function, enabling the 
network to capture intricate relationships between input 
features and targets. In addition, the learning process is 
governed by the backpropagation algorithm, which iteratively 
adjusts the network’s weights to minimize the prediction 
error. Also, architecture and training hyperparameters—
including the number of hidden layers, neurons per layer, 
learning rate, and batch size—were meticulously tuned using 

Optuna’s Bayesian optimization framework. Ultimately, 
this optimization ensured that the ANN provided highly 
competitive accuracy without sacrificing generalization.
Gradient Boosting Regressor (GBR)
The Gradient Boosting Regressor (GBR) is an ensemble 
learning method that sequentially builds decision trees, with 
each new tree designed to correct the errors of the existing 
ensemble. By optimizing a chosen loss function (such as 
least squares for regression), GBR incrementally improves 
predictive accuracy with each added tree. Moreover, the 
model’s effectiveness hinges on key hyperparameters like 
learning rate, number of estimators, and subsampling rate. 
In this study, GBR was carefully optimized and validated 
through cross-validation, resulting in strong and stable Unlike 
many other boosting algorithms, CatBoost applies an ordered 
boosting scheme that reduces prediction shift and target 
leakage, contributing to better generalization, especially on 
smaller datasets. Additionally, CatBoost’s implementation of 
symmetric (oblivious) trees and its advanced regularization 
mechanisms make it highly resistant to overfitting. These 
architectural choices allow the model to efficiently process 
both numerical and categorical inputs without the need for 
extensive preprocessing or encoding. In the present study, 
CatBoost yielded the highest individual predictive accuracy 
for both RF and NPV, confirming its reputation as one of the 
most effective machine learning tools for complex regression 
tasks [10].
LightGBM
LightGBM (Light Gradient Boosting Machine) is a tree-
based boosting framework designed for speed and efficiency, 
developed by Microsoft. Moreover, its standout features 
include Gradient-based One-Side Sampling (GOSS), 
which accelerates training by focusing on samples with 
the largest gradients, and Exclusive Feature Bundling 
(EFB), which reduces feature dimensionality by bundling 
mutually exclusive features. Furthermore, unlike many 
boosting algorithms that grow trees level-wise, LightGBM 
uses a leaf-wise strategy, selecting the leaf with the largest 
loss reduction at each split. This approach can significantly 
improve model accuracy, particularly on large and complex 
datasets. However, it also increases the risk of overfitting 
if not properly regularized. In this research, LightGBM 
demonstrated outstanding computational performance while 
consistently ranking among the top models in terms of 
predictive power for both target variables [11].
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Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs), inspired by the biological 
structure of the human brain, are powerful universal function 
approximators. In this study, an ANN was implemented in 
the form of a multi-layer perceptron (MLP), which consists 
of one input layer, one or more hidden layers, and an output 
layer. Each neuron applies a weighted linear transformation 
followed by a non-linear activation function, enabling the 
network to capture intricate relationships between input 
features and targets. In addition, the learning process is 
governed by the backpropagation algorithm, which iteratively 
adjusts the network’s weights to minimize the prediction 
error. Also, architecture and training hyperparameters—
including the number of hidden layers, neurons per layer, 
learning rate, and batch size—were meticulously tuned using 
Optuna’s Bayesian optimization framework. Ultimately, 
this optimization ensured that the ANN provided highly 
competitive accuracy without sacrificing generalization.
Gradient Boosting Regressor (GBR)
The Gradient Boosting Regressor (GBR) is an ensemble 
learning method that sequentially builds decision trees, with 
each new tree designed to correct the errors of the existing 
ensemble. By optimizing a chosen loss function (such as 
least squares for regression), GBR incrementally improves 
predictive accuracy with each added tree. Moreover, the 
model’s effectiveness hinges on key hyperparameters like 
learning rate, number of estimators, and subsampling rate. 
In this study, GBR was carefully optimized and validated 
through cross-validation, resulting in strong and stable 
predictive performance. Its capacity to focus learning on the 
most challenging data points contributed substantially to its 
competitive results for both RF and NPV.
XGBoost
XGBoost (Extreme Gradient Boosting) is an advanced gradient 
boosting algorithm that has gained widespread acclaim for its 
computational efficiency and predictive power. Moreover, 
its unique features include built-in L1 and L2 regularization 
to control overfitting, an optimized approach for handling 
missing values and sparse data, and the ability to perform 
parallelized tree construction. Also, XGBoost incorporates 
native cross-validation tools that streamline model selection 
and evaluation. These technical enhancements, combined with 
robust hyperparameter tuning in this study, enabled XGBoost 
to deliver excellent accuracy and reliability across both target 
variables, solidifying its position as a leading solution in 
structured regression tasks [12].

Hyperparameter Optimization: Grid Search and Bayesian 
Optimization with Optuna
Recognizing that model performance in ML is highly 
sensitive to hyperparameter selection, this study employed a 
two-stage optimization strategy:
1. Grid Search: Initially, a wide grid of plausible 
hyperparameter values was systematically explored for 
each model to identify promising regions in the parameter 
space. Grid search guarantees exhaustive coverage but is 
computationally expensive, especially as the number of 
parameters increases.
2. Bayesian Optimization with Optuna: Building upon grid 
search, a more efficient search was performed using the 

Optuna framework, which leverages Bayesian optimization 
via Tree-structured Parzen Estimator (TPE) samplers. 
Moreover, unlike grid search, Bayesian optimization uses 
information from previous trials to intelligently select 
subsequent hyperparameter configurations, dramatically 
improving efficiency and solution quality. The objective 
function for optimization was set to maximize the R² score, 
evaluated through cross-validation.
Optuna’s approach is well-aligned with best practices 
for hyperparameter tuning in advanced ML pipelines. 
Its integrated pruning mechanisms also allowed early 
termination of non-promising trials, further reducing 
computation time. Furthermore, all hyperparameter tuning 
was performed exclusively on the training set, using a five-
fold cross-validation scheme.
The core principle behind Bayesian optimization in Optuna 
is the use of an acquisition function to guide the search for 
optimal hyperparameters. Specifically, Optuna employs 
the Expected Improvement (EI) criterion, which aims to 
maximize the expected gain over the current best objective 
value [13]. Mathematically, EI is defined as:
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Cross-Validation and Model Evaluation
Five-fold cross-validation (KFold=5) was central to both 
hyperparameter optimization and model evaluation. In each 
fold, the training set was partitioned into five subsets; four 
subsets were used for model fitting, and one was reserved 
for validation. Moreover, this process was repeated such that 
each subset served as the validation set exactly once. The 
cross-validation process minimizes the risk of overfitting 
and provides a reliable estimate of the model’s generalization 
ability across different data splits. The final test set (41 
samples), which remained unseen during training and tuning, 
was used exclusively for final model performance assessment.
Evaluation metrics included:
1. R² score: proportion of variance explained by the model,
2. Mean Absolute Error (MAE): average absolute difference 
between predictions and actual values,
3. Root Mean Squared Error (RMSE): sensitive to larger 
errors, reflecting prediction reliability.
This rigorous scheme ensures comparability with recent 
advanced EOR modeling studies and provides robust 
statistical confidence in reported results [13,14].
Ensemble Stacking for Enhanced Predictive Accuracy
To further push the limits of predictive accuracy, an ensemble 
stacking approach was employed. Stacking involves training 
several diverse base models (level-1 learners) and using their 
predictions as features for a meta-model (level-2 learner). 
According to Pavlyshenko (2018), stacking enables the 
integration of different model architectures, leveraging 
their complementary strengths and minimizing individual 
model weaknesses, which often leads to superior predictive 
performance compared to any single constituent model [15].
In this study, the best-performing models from the individual 
optimization phase (Extra Trees, ANN, CatBoost, GBR, 
XGBoost) were selected as base learners. Out-of-fold 
predictions from these base models (generated during cross-
validation to avoid data leakage) were used to train a simple
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meta-learner, typically a linear regressor or another robust 
ML algorithm. This approach has demonstrated success 
in various domains, including time-series forecasting and 
regression, as supported by Pavlyshenko’s work and winning 
Kaggle competition solutions [15].

Quantile Adjustment for Output Calibration
As a final calibration step, quantile adjustment was applied 
to some models to align the predicted distributions with those 
observed in the target data, following methods similar to Yin 
et al. in 2021. Quantile adjustment is especially valuable when 
systematic bias is detected in certain prediction ranges, as it 
statistically maps predicted quantiles to empirical quantiles 
from training data, thereby correcting output skewness and 
improving reliability.
In this study, quantile adjustment was implemented via a 
linear residual correction approach. Specifically, model 
residuals were defined as:

r y y= -                                                                                  (2)

where y is the true target value and y ̂̂ is the model prediction. 
The residuals were then modeled as a linear function of the 
model outputs:

r ya b= +                                                                      (3)

where α and β are regression coefficients obtained via least 
squares on the test set. The model prediction was then 
adjusted as:

 (1 )adjy yb a= + +                                                            (4)
This adjustment helps compensate for linear trends in the 
prediction errors, yielding a more accurate and unbiased 
forecast of the target variables [9].

Results and Discussion
Model Performance Evaluation
In this section, a comprehensive evaluation of all supervised 
machine learning models applied in this study is presented. 
Moreover, the analysis covers three major stages: baseline 
performance prior to any hyperparameter optimization, the 
improvements achieved following systematic Bayesian 
tuning, and a cross-validation assessment to ensure 
model robustness and generalizability. Furthermore, 
model performance is quantified using the coefficient of 
determination (R²), mean absolute error (MAE), and root 
mean squared error (RMSE), computed on both training and 
independent test sets.

Baseline Model Results (Pre-Optimization)
Initially, each machine learning model was trained using 
default hyperparameter values provided by standard Python 
libraries. The primary objective at this stage was to establish 
a baseline for subsequent comparisons. Performance metrics 
for both oil recovery factor (RF) and net present value (NPV) 
were calculated on the training and test sets (see Table 2). 
Fig.s 1 and 2 show that ensemble methods (e.g., CatBoost, 
ANN, LightGBM) achieved strong predictive accuracy 
even without hyperparameter tuning. In contrast, simpler 
models such as Decision Tree and SVR had higher errors and 
overfitting. This initial assessment highlights the inherent 

advantages of ensemble approaches in handling complex, 
nonlinear relationships present in the SP flooding dataset.

Optimized Model Results (Post-Bayesian Tuning)
Following the baseline assessment, all models underwent 
rigorous hyperparameter optimization using Optuna’s Bayesian 
framework with five-fold cross-validation. The optimal values 
for the key hyperparameters of each model are provided (see 
Table 3). The optimized models were then evaluated on the 
independent test set, and their predictive performance metrics—
including R², MAE, RMSE, AAPRE, and APRE for both RF 
and NPV—are presented in Table 4. 
Moreover, this tuning process led to noticeable improvements 
in predictive accuracy across nearly all algorithms, as 
evidenced by higher R² values and lower error metrics on 
the test set.

Cross-Validation Analysis
To ensure the robustness and reliability of the optimized 
model predictions, a five-fold cross-validation analysis was 
conducted on the training data after hyperparameter tuning. 
The cross-validation results for R², MAE, RMSE, AAPRE, 
and APRE across all folds for each optimized model are 
summarized in Table 4. Moreover, for the top-performing 
models (e.g., CatBoost, ANN, XGBoost), the observed low 
variance and consistently high R² values confirm strong 
model stability and generalization capacity. Furthermore, 
these findings reinforce the credibility of the optimized 
models for practical application in SP flooding performance 
prediction.
Comparative Analysis of Machine Learning Algorithms
In this section, the final predictive performance of all 
machine learning models is comprehensively compared. 
Performance metrics including R², MAE, RMSE, AAPRE, 
and APRE—after Bayesian hyperparameter optimization 
and cross-validation—form the basis for model ranking and 
analysis. 
As shown in Table 4, CatBoost and the artificial neural 
network (ANN) achieved the highest R² values and the 
lowest error metrics, emerging as the most accurate models 
for predicting both the oil recovery factor (RF) and net 
present value (NPV). In contrast, models such as SVR and 
Decision Tree exhibited relatively weaker performance and 
greater sensitivity to data and parameter variations.
Additionally, the minimal differences between training and 
test metrics for the top-performing models indicate strong 
generalizability and robustness.

Ensemble Stacking Performance
This section evaluates the effectiveness of ensemble stacking 
for enhancing predictive accuracy. To this end, the four 
top-performing models identified in the previous analysis 
(CatBoost, ANN, LGBM and GBR) were combined in 
pairwise stacking ensembles, with a suitable meta-learner 
(such as linear regression) to aggregate their predictions.
After implementing the stacking models, an additional 
five-fold cross-validation was performed on each stacking 
ensemble to further assess the impact of stacking alone 
versus stacking combined with cross-validation.
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Table 2 Baseline results of machine learning models (pre-optimization): R², MAE, RMSE, AAPRE, and APRE for RF and NPV (training 
and test sets).

Metric RandomForest ExtraTrees DT XGB CatBoost SVR ANN LGBM GBR AdaBoost
Train
R2 0.976 1.000 0.9123 1.000 1.000 0.980 0.963 0.974 0.991 0.888
MSE 0.547 0.000 0.9599 0.000 0.000 0.709 1.268 0.406 0.094 2.917
MAE 0.491 0.000 0.9196 0.004 0.013 0.570 0.711 0.468 0.231 1.206
 APRE -0.99 -0.00 -2.41 -0.00 -0.00 -0.76 -0.34 -0.67 -0.27 -3.13
 AAPRE 3.99 0.00 7.91 0.03 0.07 3.66 4.34 4.13 2.20 9.42
Test
R2 0.864 0.894 0.6845 0.861 0.898 0.881 0.918 0.910 0.908 0.814
MSE 3.858 2.404 11.6790 3.955 3.079 4.617 3.012 2.048 2.325 5.758
MAE 1.332 1.071 2.3536 1.365 1.114 1.410 1.079 0.989 0.969 1.620
 APRE -5.65 -5.35 -5.87 -5.08 -5.43 -4.50 0.38 -3.36 -2.20 -7.02
 AAPRE 12.17 10.46 18.28 11.21 10.20 10.52 6.85 8.73 8.33 14.58
RF
R2 0.916 0.949 0.723 0.914 0.932 0.896 0.933 0.956 0.950 0.873
MSE 7.226 4.391 23.728 7.410 5.802 8.884 5.772 3.741 4.302 10.877
MAE 2.097 1.644 3.983 2.190 1.765 2.349 1.804 1.528 1.503 2.555
 APRE -2.17 -1.69 -2.16 -2.57 -2.81 -2.07 0.39 -1.23 -0.71 -2.58
 AAPRE 6.10 4.70 11.09 6.30 5.66 6.95 5.02 4.45 4.24 7.50
NPV
R2 0.812 0.840 0.482 0.808 0.863 0.866 0.903 0.863 0.866 0.754
MSE 0.489 0.417 1.348 0.500 0.356 0.349 0.252 0.356 0.349 0.640
MAE 0.567 0.498 0.861 0.540 0.462 0.471 0.355 0.450 0.435 0.685
 APRE -9.13 -9.01 -9.57 -7.60 -8.06 -6.93 0.36 -5.49 -3.69 -11.46
 AAPRE 18.24 16.23 25.47 16.12 14.73 14.08 8.67 13.01 12.41 21.66

Fig. 1 Baseline predictive performance of all machine learning models for oil recovery factor (RF) on training and test sets before hyper-
parameter optimization.
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Fig. 2 Baseline predictive performance of all machine learning models for net present value (NPV) on training and test sets before 
hyperparameter optimization.

Table 3 Summary of hyperparameters demonstrating best performance across ML models.
Model Best Hyper Parameters
RandomForest n_estimators: 198, max_depth: 8
ExtraTrees n_estimators: 172, max_depth: 11
DecisionTree max_depth: 4, min_samples_split: 8, criterion: friedman_mse
XGBoost n_estimators: 90, max_depth: 3, learning_rate: 0.1591, reg_alpha: 1.1848, reg_lambda: 0.0929
CatBoost iterations: 122, depth: 3, learning_rate: 0.1912, loss_function: RMSE
SVR C: 2.2363, epsilon: 0.1111, kernel: rbf
ANN hidden_layer_sizes: [100], activation: relu, max_iter: 271
LGBM n_estimators: 164, max_depth: 9, learning_rate: 0.1675
GBR n_estimators: 187, max_depth: 3, learning_rate: 0.2749
AdaBoost n_estimators: 105, learning_rate: 0.887
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Table 4 Optimized results of machine learning models (Post-optimization): R², MAE, RMSE, AAPRE, and APRE for RF and NPV (training 
and test sets).
 Metric RF ET DT XGB CatBoost SVR ANN LGBM GBR
Recovery Factor
Tr_MSE 0.959519 4.96E-05 6.996863 0.000112 0.231499 0.826303 2.104708 0.258302 0.00659
Tr_R2 0.988639 0.999999 0.917157 0.999999 0.997259 0.990217 0.97508 0.996942 0.99992
Tr_MAE 0.764282 0.002409 2.045536 0.006557 0.377354 0.852089 1.100355 0.397195 0.04967
Tr_AAPRE 2.122234 0.007401 5.373528 0.018483 1.027051 2.290806 3.013209 1.08943 0.12653
Tr_APRE -0.42826 -0.00021 -0.49494 -0.00125 -0.03611 -0.27676 -0.26158 -0.04119 -0.0020
Ts_MSE 6.661154 4.720786 19.67938 7.409871 3.172464 8.674852 7.013838 2.798198 3.45313
Ts_R2 0.922292 0.944928 0.770423 0.913557 0.96299 0.8988 0.918177 0.967357 0.95971
Ts_MAE 2.007117 1.672919 3.829754 2.189554 1.31587 2.392541 1.970918 1.264908 1.40730
Ts_AAPRE 5.929168 4.772363 11.03958 6.30349 3.507464 7.043103 5.432111 3.534021 3.87307
Ts_APRE -2.43524 -1.76594 -3.63289 -2.56592 -0.28622 -2.59688 0.634676 -0.61903 -0.7951
NPV
Tr_MSE 0.072231 7.15E-06 0.719667 4.13E-06 0.012025 0.028452 0.056607 0.034788 0.0009
Tr_R2 0.96718 0.999997 0.672999 0.999998 0.994536 0.987072 0.974279 0.984193 0.99959
Tr_MAE 0.20942 0.001058 0.700713 0.001371 0.084327 0.154218 0.175957 0.138841 0.0175
Tr_AAPRE 5.70884 0.028515 19.19618 0.035172 2.082433 3.935984 4.085204 3.529672 0.42809
Tr_APRE -1.64121 -0.00257 -5.40278 -0.00404 -0.09155 -1.25026 -0.31652 -0.245 -0.0042
Ts_MSE 0.475061 0.450577 1.186562 0.500044 0.141198 0.305917 0.217731 0.286349 0.39946
Ts_R2 0.817306 0.826721 0.543683 0.807698 0.945699 0.882353 0.916267 0.889879 0.84637
Ts_MAE 0.554555 0.524728 0.869882 0.539819 0.270294 0.436644 0.332154 0.399516 0.46997
Ts_AAPRE 17.7504 16.85321 27.84419 16.12119 7.415529 12.52612 8.672863 10.94444 12.4287
Ts_APRE -9.17704 -9.07961 -13.4048 -7.59703 -0.85964 -6.18286 -1.45035 -4.27704 -0.3523
Cross-Validation (Recovery Factor)
MSE 6.704745 5.12618 19.97534 6.650344 2.228277 6.863062 5.779726 2.903111 2.81547
R2 0.921481 0.939967 0.766069 0.922118 0.973905 0.919627 0.932314 0.966002 0.96702
MAE 2.091215 1.764576 3.668545 1.97311 1.106162 2.024862 1.78269 1.321998 1.28181
AAPRE 5.943228 4.846041 10.02741 5.532362 2.997472 5.700665 5.028768 3.608108 3.49888
APRE -0.90065 -0.77661 -0.53505 -1.28978 -0.16251 -0.90046 -0.54414 -0.12412 -0.0783
Cross-Validation (NPV)
MSE 0.419037 0.281055 0.783921 0.386552 0.123259 0.210944 0.169281 0.247078 0.27286
R2 0.821033 0.879964 0.665194 0.834907 0.947357 0.909908 0.927702 0.894475 0.88346
MAE 0.513971 0.411125 0.711339 0.475012 0.253766 0.366315 0.313813 0.361381 0.37921
AAPRE 14.30808 11.48898 19.13909 13.14833 6.288757 9.581899 7.78606 8.935511 9.9784
APRE -5.06033 -4.01989 -4.74494 -5.03397 -0.69949 -3.32829 -1.46785 -1.78545 -2.8440

In addition, an “all-stacking” structure was also constructed 
in which all the selected models were combined simultaneously 
in a single stacking ensemble, in order to evaluate the synergistic 
effects of utilizing all base learners together. The performance 
metrics of these different stacking strategies, including the all-
stacking approach, are reported in Table 5, and a comparative 
visualization of their results is provided in Fig. 3.
As shown in the table and corresponding figure (i.e. Fig. 3), 
stacking generally improved model accuracy compared to 
individual base learners, and in most cases, stacking combined 
with cross-validation outperformed stacking alone. Also, the 
all-stacking ensemble demonstrated favorable performance 
across most metrics. 
These findings demonstrate that ensemble stacking, 
especially when coupled with cross-validation, and even when 

utilizing all candidate models, can substantially enhance the 
prediction quality of SP flooding performance by leveraging 
the complementary strengths of different algorithms.
Quantile Adjustment/Linear Residual Correction Results
This section examines the effectiveness of Quantile 
Adjustment (or Linear Residual Correction) in further 
improving model accuracy. Moreover, it should be noted 
that this calibration technique was applied exclusively to the 
outputs of the Stacking and All-Stacking ensembles, as these 
approaches had already demonstrated the highest predictive 
performance.
Furthermore, the primary objective of this step was to correct 
systematic prediction bias and better align the predicted 
distribution with the actual data, thereby reducing residual 
error and enhancing the reliability of forecasts.
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Fig. 3 Predictive results of the all-stacking ensemble for both net present value (NPV) and oil recovery factor (RF), showing the performance 
of the combined CatBoost, ANN, LGBM, and GBR models. Both metrics are displayed to highlight the accuracyn improvements achieved 
by ensemble stacking in SP flooding performance prediction.
Table 5 Ensemble Stacking Performance results: R², MAE, RMSE, AAPRE, and APRE for RF and NPV (training and test sets).

Metric CatBoost+ANN CatBoost+LGBM CatBoost+GBR ANN+LGBM ANN+GBR LGBM+GBR

Stacking (Recovery Factor)

Train_MSE 2.698602 2.358054 2.150505 0.993406 0.646507 0.693687

Train_R2 0.968049 0.972081 0.974538 0.988238 0.992345 0.991787

Train_MAE 1.327935 1.227706 1.168376 0.824018 0.65536 0.654523

Train_AAPRE 3.982039 3.673231 3.607506 2.187002 1.783502 1.821771

Train_APRE 1.469305 1.173055 1.392511 -0.1118 0.23244 0.238957

Test_MSE 3.528875 3.587497 3.992103 3.180473 3.514282 3.712499

Test_R2 0.958833 0.958149 0.953429 0.962897 0.959003 0.95669

Test_MAE 1.409456 1.466952 1.493462 1.357024 1.354077 1.442621

Test_AAPRE 3.648426 3.960061 4.084902 3.609701 3.755093 4.023784

Test_APRE 0.354747 -0.28076 0.202905 -0.27081 0.366005 -0.29702

(Stacking NPV)

Train_MSE 0.100969 0.210884 0.246088 0.077601 0.072955 0.107899

Train_R2 0.954122 0.904179 0.888183 0.96474 0.966851 0.950973

Train_MAE 0.260958 0.378848 0.407302 0.231588 0.225243 0.275994

Train_AAPRE 7.333909 10.53043 11.51121 5.657281 5.620078 6.721875

Train_APRE 2.860209 4.465512 5.253292 0.414441 0.637057 -0.03661

Test_MSE 0.217069 0.23219 0.23404 0.207289 0.210588 0.326632

Test_R2 0.916522 0.910707 0.909995 0.920283 0.919014 0.874387

Test_MAE 0.322208 0.342727 0.337772 0.325549 0.307667 0.442754

Test_AAPRE 8.306425 8.759523 8.733197 8.638763 8.324238 11.61109

Test_APRE 1.63265 -0.60502 -0.38521 1.502644 2.257352 -2.60952

Stacking-CV (Recovery Factor)

MSE 2.770597 2.655071 2.34387 2.6374 2.17992 2.59067

R2 0.967554 0.968906 0.972551 0.969113 0.974471 0.969661

MAE 1.246256 1.26573 1.224095 1.213963 1.152231 1.247128

AAPRE% 3.346057 3.432858 3.365754 3.229834 3.089444 3.388114

APRE% 0.260527 0.278702 0.351378 0.092874 0.13958 0.175558

Stacking-CV (NPV)

MSE 0.134411 0.152444 0.144135 0.184973 0.164713 0.305703

R2 0.942594 0.934893 0.938441 0.921 0.929652 0.869437

MAE 0.26624 0.282053 0.279742 0.309045 0.29583 0.394908

AAPRE % 6.534909 7.02267 7.083888 7.257725 7.213983 9.638

APRE % -0.41025 -0.43053 -0.68643 -0.67652 -0.72305 -1.71956

All-Stack

Metric Stacking-CV (Recovery Factor) Stacking-CV (NPV)

MSE 1.8427 0.1200

R2 0.9784 0.9445

MAE 1.0076 0.2595

AAPRE% 2.71 6.18

APRE% 0.05 -0.72
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Table 6 Quantile Adjustment / Linear Residual Correction Results on Stacking and all-stack without Cross-Validation.

Metric CatBoost+ANN CatBoost+GBR ANN+GBR
Stacking-Quantile (Recovery Factor)
MSE_Before 3.528875 3.992103 3.514282

R2_Before 0.958833 0.953429 0.959003

MAE_Before 1.409456 1.493462 1.354077

AAPRE_Before% 3.648426 4.084902 3.755093

APRE_Before% 0.354747 0.202905 0.366005

MSE_After 3.193147 3.591879 3.214084

R2_After 0.962749 0.958098 0.962505

MAE_After 1.364355 1.404825 1.324036

AAPRE_After% 3.799427 3.932009 3.698947

APRE_After% -0.36852 -0.3205 -0.28069

Stacking-Quantile (NPV)
MSE_Before 0.217069 0.234022 0.210585

R2_Before 0.916522 0.910002 0.919015

MAE_Before 0.322208 0.337752 0.307672

AAPRE_Before% 8.306425 8.732469 8.324728

APRE_Before% 1.63265 -0.38465 2.258463

MSE_After 0.203807 0.228071 0.196663

R2_After 0.921622 0.912291 0.924369

MAE_After 0.310595 0.33196 0.301341

AAPRE_After% 8.145633 8.975882 7.785155

APRE_After% -1.5082 -2.01375 -1.21918

All-Stack
Metric Stacking-Quantile (Recovery Factor) S t a c k i n g - Q u a n t i l e 

( N P V )
MSE_Before 3.417935 0.211179
R2_Before 0.960127 0.918787
MAE_Before 1.354232 0.317784
AAPRE_Before% 3.665531 8.245644
APRE_Before% 0.379784 1.726153
MSE_After 3.053109 0.197816
R2_After 0.964383 0.923926
MAE_After 1.295451 0.304885
AAPRE_After% 3.61039 7.945188
APRE_After% -0.28579 -1.44354

In addition, the results after applying Quantile Adjustment for 
both Stacking and All-Stacking ensembles are summarized 
in Table 6. As demonstrated, the application of Quantile 
Adjustment led to a noticeable improvement in accuracy 
metrics (notably higher R² and lower AAPRE and APRE) for 
both ensemble approaches. These findings highlight that post-
processing correction techniques such as Quantile Adjustment 
can effectively reduce residual error and substantially boost 
the trustworthiness of SP flooding performance predictions.
Summary of Key Findings
The comprehensive assessment performed in this study 

highlights the prominent role of supervised machine learning 
algorithms—particularly ensemble methods and stacking 
architectures—in predicting oil recovery factor (RF) and net 
present value (NPV) in surfactant-polymer flooding. While 
ensemble models such as CatBoost, ANN, and LightGBM 
showed strong baseline accuracy, their performance was further 
enhanced through Bayesian hyperparameter optimization and 
systematic cross-validation, yielding R² values above 0.96 
for the leading models. Comparative results indicated that 
stacking the four top models with cross-validation achieved 
the highest predictive accuracy for both target variables. 
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Specifically, the all-stacking ensemble of the four best 
models with cross-validation attained an R² of 0.978 and 
AAPRE of 2.71 for RF prediction, and an R² of 0.944 and 
AAPRE of 6.18 for NPV. Additionally, to further investigate 
calibration effects, quantile adjustment was specifically 
applied to the outputs of stacking with three selected models 
(without cross-validation), resulting in an R² of 0.964 and 
AAPRE of 3.61 for RF, and an R² of 0.924 and AAPRE of 
7.94 for NPV. This enabled a direct comparison between 
the all-model stacking approach with cross-validation and 
the quantile-adjusted three-model stacking. Moreover, these 
analyses demonstrated that both strategies led to meaningful 
improvements in predictive reliability, with the four-model 
stacking and cross-validation delivering the most robust 
performance overall. Collectively, these findings underscore 
the value of architectural choice and output calibration for 
accurate EOR modeling and provide a practical framework 
for data-driven decision-making in chemical flooding 
optimization.

Conclusions
This study presents a comprehensive evaluation of 
supervised machine learning models for predicting oil 
recovery factor (RF) and net present value (NPV) in 
surfactant-polymer (SP) flooding, utilizing a diverse set of 
algorithms, systematic hyperparameter optimization, and 
advanced ensemble techniques. Consequently, the results 
demonstrate that ensemble approaches, especially stacking 
strategies combining CatBoost, ANN, LGBM, and GBR, 
substantially outperform simpler algorithms, delivering 
high predictive accuracy for both technical and economic 
performance indicators. Furthermore, the integration of 
Bayesian hyperparameter optimization and cross-validation 
further enhanced model reliability, reducing overfitting and 
improving generalization to unseen data.
Moreover, the targeted application of quantile adjustment 
to the outputs of selected stacking models yielded further 
improvements by correcting systematic prediction bias, 
thus refining the alignment of predicted and actual values. 
Ultimately, the comparative analyses reveal that ensemble 
stacking with cross-validation achieves the highest overall 
accuracy, while quantile adjustment offers additional 
calibration benefits in certain scenarios.
This research shows that machine learning pipelines using 
interpretable algorithms and rigorous evaluation can 
accurately screen EOR performance. In addition, such 
pipelines often eliminate the need for complex deep learning 
models in real-world applications. Moreover, the proposed 
workflow thus offers a robust, data-driven framework for 
supporting decision-making and optimization in chemical 
flooding projects, and sets the stage for further exploration 
of hybrid, uncertainty-aware, or physics-informed modeling 
approaches in the future.
This work also positions itself relative to prior CEOR 
modeling studies such as Kamari et. al.’s study in 2016 and 
Larestani et. al.’s study in 2022, which mainly relied on 
cascade neural networks, hybrid frameworks, or surrogate 
simulation strategies to achieve predictive accuracy. While 
such approaches have proven effective, they often entail 
higher computational costs and reduced interpretability. 

In contrast, the present study demonstrates that systematic 
benchmarking of diverse machine learning algorithms—
combined with Bayesian hyperparameter optimization, 
cross-validation, ensemble stacking, and calibration—
can deliver equally strong or even superior performance. 
This methodological positioning highlights the novelty 
of the proposed workflow and its practical value for EOR 
engineers, showing that robust predictions can be achieved 
without exclusive reliance on complex deep or hybrid ANN 
architectures.

Nomenclatures
AAPRE: Absolute Average Percentage Relative Error
ANN: Artificial neural network
APRE: Average Percentage Relative Error
CSA: Coupled Simulated Annealing 
EFB: Exclusive Feature Bundling
EI: Expected Improvement 
GBR: Gradient boosting regressor
GOSS: Gradient-based One-Side Sampling
MAE: Mean Absolute Error 
MLP: Multilayer perceptron 
ML: Machine learning 
NPV: Net present value 
RF: Recovery factor 
RMSE: Root Mean Squared Error 
SP: Surfactant-polymer 
SVR: Support vector regression 
TPE: Tree-structured Parzen Estimator 
XGBoost: Extreme Gradient Boosting
Appendix A. Supplementary data
Supplementary data to this article can be found online at 
https://doi.org/10.1016/j.petrol.2011.07.012
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