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Abstract

Surfactant-polymer (SP) flooding is recognized as an effective chemical enhanced oil recovery (EOR) method, where
accurate prediction of oil recovery factor (RF) and net present value (NPV) is vital for field development planning
and economic analysis. This study systematically evaluates a range of supervised machine learning algorithms—in-
cluding CatBoost, artificial neural networks (ANN), XGBoost, LightGBM, and gradient boosting regressor (GBR)—
for forecasting RF and NPV based on experimental SP flooding data. Baseline model results were established using
default hyperparameters, followed by comprehensive two-stage hyperparameter tuning using grid search and Bayes-
ian optimization with Optuna, along with five-fold cross-validation to ensure robustness. CatBoost and ANN con-
sistently achieved the highest predictive accuracy. In addition, ensemble stacking was then performed by combining
top-performing models, further enhancing prediction reliability and generalization. Additional post-processing using
quantile adjustment (linear residual correction) addressed residual bias and improved calibration between predict-
ed and observed values. Furthermore, model performance was benchmarked using standard statistical metrics and
comparative graphical analysis. Also, the results demonstrate that integrating well-established supervised learning
methods with systematic optimization, stacking, and output calibration offers a robust and practical framework for
accurate prediction of SP flooding outcomes. Moreover, this approach provides valuable support for data-driven deci-
sion-making in EOR project design and evaluation. Furthermore, the proposed framework achieved strong predictive
accuracy in the all-stacking ensemble with cross-validation, yielding an R? of 0.978 and AAPRE of 2.71 for recovery
factor, and an R? of 0.944 and AAPRE of 6.18 for net present value. Ultimately, then applying quantile adjustment
to the all-stacking ensemble, the performance remained competitive, with an R? of 0.964 and AAPRE of 3.61 for
recovery factor, and an R? of 0.924 and AAPRE of 7.94 for net present value, further demonstrating the robustness
of the approach.

Keywords: Surfactant-polymer Flooding; Oil Recovery Factor; Net Present Value; Supervised Machine Learning;
Ensemble Stacking; Bayesian Optimization; Quantile Adjustment.

Introduction

Increasing oil recovery from reservoirs remains a
strategic and technically challenging task in petroleum
engineering, especially as a significant fraction of
hydrocarbon reserves persists as residual oil after
conventional waterflooding [1]. To address this,
advanced Enhanced Oil Recovery (EOR) techniques
have been developed, with surfactant-polymer (SP)
flooding recognized as a highly promising approach
due to its dual capability of lowering interfacial tension
and increasing the viscosity of the displacing phase,
thereby mobilizing trapped oil and improving recovery
efficiency.

However, designing and optimizing SP flooding
processes is challenging due to reservoir heterogeneity,

fluid-rock interactions, and operational complexities.
Although numerical simulators like UTCHEM are
widely used for analysis, they are less practical for
preliminary studies because of high computational costs,
parameter sensitivity, and large data requirements [2].
Consequently, data-driven modeling and the adoption
of machine learning (ML) and artificial intelligence
(Al) algorithms have gained significant momentum in
petroleum engineering research and practice [3.4].

In recent years, numerous studies have explored ML-
based prediction of key SP flooding metrics, such as
recovery factor (RF) and net present value (NPV). For
instance, Karambeigi et al. (2011) pioneered the use of
multilayer perceptron (MLP) neural networks trained on
UTCHEM simulation data, achieving mean absolute
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relative errors of 2.12% for RF and 4.6% for NPV, thus
validating ANN models as efficient surrogates for numerical
simulation and scenario optimization [3]. Subsequently,
Kamari et al. (2016) introduced LSSVM models optimized
with Coupled Simulated Annealing (CSA), further reducing
absolute prediction errors to 1.9% for RF and 3.1% for NPV
and demonstrating via sensitivity analysis that surfactant
concentration and slug size were the most influential
variables—though increased surfactant concentration could
negatively affect NPV due to chemical costs [5].
Advanced architectures such as cascade neural networks and
gradient boosting (GBDT), as demonstrated by Larestani et
al. (2022), have achieved even lower errors (0.66% for RF
and 1.95% for NPV), showcasing the potential of ensemble
and deep learning approaches to significantly reduce
prediction errors, albeit at the expense of increased data
and computational requirements [4]. In another important
contribution, Hou et al. (2009) combined genetic algorithms
with SVM to predict oil production and water-cut curves
with less than 3% error, even for field cases with limited data,
affirming the robustness of such hybrid approaches [6].
Methodologically, most of these studies have relied on
complex or hybrid models, prioritizing accuracy but raising
questions regarding their practical implementation under
computational or data constraints. In 2013, Al-Dousari and
Garrouch provided a different perspective by defining 18
dimensionless input groups and training a three-hidden-
layer ANN to predict oil recovery with less than 3% error,
emphasizing the value of rapid reservoir screening and
preliminary assessment [1]. Moreover, complementary
research by Zerpa et al. in 2005 and Dang et al. in 2018
explored field-scale numerical optimization via surrogate
models, balancing accuracy with operational feasibility in
the presence of geological uncertainty [2,7].
Nonetheless, critical challenges such as optimal model
structure selection, input variable identification, limited
sample sizes, overfitting, and sensitivity to outliers continue
to complicate the adoption of ML models in practical EOR
scenarios. Furthermore, while high-accuracy results are often
achieved by leveraging complex architectures or ensemble
approaches (e.g., stacking), a systematic evaluation of
whether simpler ML models, when enhanced with advanced
validation techniques (such as cross-validation and stacking),
can approach the accuracy of their complex counterparts
remains largely unaddressed.

This study aims to fill this gap by evaluating the performance
of ten widely-used simple ML models for predicting RF and
NPV, using high-quality numerical laboratory data for SP
flooding. Furthermore, by employing advanced validation
techniques, including stacking and cross-validation, this
study investigates whether the predictive accuracy of simple
models can be enhanced without resorting to deep or hybrid
architectures. Moreover, the results contribute both to
bridging the literature gap and to offering practical guidelines
for ML model selection in EOR projects, particularly under
resource limitations.

Material and Methods
This research aims to thoroughly investigate the predictive
capabilities of a broad spectrum of supervised machine
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learning (ML) algorithms for forecasting two critical metrics
in surfactant-polymer (SP) flooding: oil recovery factor
(RF) and net present value (NPV). In addition, the ultimate
goal is to determine whether conventional ML models,
optimized with modern hyperparameter tuning strategies and
ensemble methods, can match or even surpass the predictive
performance of deep learning and hybrid models previously
reported in literature.

Data Collection and Preprocessing

Thisstudy usesalaboratory dataset from Prasamphanich (2009),
later curated by Karambeigi et al. (2011) [4,8]. Both studies
are established benchmarks for enhanced oil recovery (EOR)
machine learning research. Moreover, this dataset consists of
202 independent SP flooding experiments, where each record
includes seven critical input variables capturing essential
operational and reservoir conditions—such as polymer drive
salinity, polymer and surfactant concentrations, slug sizes, and
permeability ratios—selected for their documented relevance
and predictive influence on chemical EOR outcomes [4]. In
addition, the response variables of interest are the oil recovery
factor (RF, %) and the net present value (NPV, SMM), both
of which represent key technical and economic metrics in SP
flooding performance assessment.

For robust and unbiased model evaluation, the full dataset
was randomly stratified into a training set (161 samples,
approximately 70%) and a test set (41 samples, 30%).
Furthermore, prior to model development, all input features
were standardized using the Standard Scaler to ensure
uniform variable scaling and stable model convergence. In
addition, the summary of the dataset’s key features, their
definitions, and statistical properties is provided in the
relevant table within the Data section (sce Table 1) and was
constructed to closely follow the conventions established in
the referenced benchmark studies [8.4].

Supervised Machine Learning Models

A comprehensive panel of ten supervised learning models
was selected:

Decision Tree (DT)

Random Forest (RF)

Extra Trees (ET)

AdaBoost

Gradient Boosting Regressor (GBR)

XGBoost

LightGBM

CatBoost

Support Vector Regression (SVR)

Artificial Neural Network (ANN, MLP-based)

The rationale for this diverse selection is rooted in their
proven effectiveness for capturing complex non-linearities in
EOR modeling [3,9]. Each algorithm brings unique strengths
in terms of interpretability, handling of feature interactions,
and regularization, offering a holistic landscape of classical
ML performance.

CatBoost

CatBoost, short for Categorical Boosting, is a high-
performance gradient boosting library developed by Yandex
that is particularly adept at modeling tabular data. What sets
CatBoost apart is its innovative use of ordered boosting and
its native handling of categorical variables.
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Table 1 Full description of the gathered dataset.
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Parameters Unit mean std min 25% 50% 75% max
Surfactant slug size PV 0.177228 | 0.072253 | 0.097 |0.097 0.178 0.259 0.259
Surfactant concentration Vol. fraction | 0.017748 | 0.011192 | 0.005 | 0.005 0.0175 | 0.03 0.03
polymer concentration in surfactant slug | wt % 0.176629 | 0.066828 | 0.1 0.1 0.175 0.25 0.25
polymer drive size PV 0.481748 | 0.143979 | 0.324 | 0.324 0.478 0.648 0.648
polymer concentration in polymer drive | wt % 0.148158 | 0.044381 | 0.1 0.1 0.147 0.2 0.2

K /K, ratio - 0.128515 | 0.107642 | 0.01 0.01 0.13 0.25 0.25
Salinity of polymer drive Megq/ml 0.348599 | 0.044729 | 0.3 0.3 0.349 0.4 0.4
Recovery factor (RF) % 39.66802 | 9.263624 | 14.82 |33.9225 |41.865 |46.635 |56.99
Net present value (NPV) $ MM 4.451225 1.533972 | 1.065 | 3.37235 | 4.38985 | 5.55675 | 8.1017

Unlike many other boosting algorithms, CatBoost applies
an ordered boosting scheme that reduces prediction shift
and target leakage, contributing to better generalization,
especially on smaller datasets. Additionally, CatBoost’s
implementation of symmetric (oblivious) trees and its
advanced regularization mechanisms make it highly resistant
to overfitting. These architectural choices allow the model
to efficiently process both numerical and categorical inputs
without the need for extensive preprocessing or encoding.
In the present study, CatBoost yielded the highest individual
predictive accuracy for both RF and NPV, confirming its
reputation as one of the most effective machine learning tools
for complex regression tasks [10].

LightGBM

LightGBM (Light Gradient Boosting Machine) is a tree-
based boosting framework designed for speed and efficiency,
developed by Microsoft. Moreover, its standout features
include Gradient-based One-Side Sampling (GOSS),
which accelerates training by focusing on samples with
the largest gradients, and Exclusive Feature Bundling
(EFB), which reduces feature dimensionality by bundling
mutually exclusive features. Furthermore, unlike many
boosting algorithms that grow trees level-wise, LightGBM
uses a leaf-wise strategy, selecting the leaf with the largest
loss reduction at each split. This approach can significantly
improve model accuracy, particularly on large and complex
datasets. However, it also increases the risk of overfitting
if not properly regularized. In this research, LightGBM
demonstrated outstanding computational performance while
consistently ranking among the top models in terms of
predictive power for both target variables [11].

Artificial Neural Network (ANN)

Artificial Neural Networks (ANNG5), inspired by the biological
structure of the human brain, are powerful universal function
approximators. In this study, an ANN was implemented in
the form of a multi-layer perceptron (MLP), which consists
of one input layer, one or more hidden layers, and an output
layer. Each neuron applies a weighted linear transformation
followed by a non-linear activation function, enabling the
network to capture intricate relationships between input
features and targets. In addition, the learning process is
governed by the backpropagation algorithm, which iteratively
adjusts the network’s weights to minimize the prediction
error. Also, architecture and training hyperparameters—
including the number of hidden layers, neurons per layer,
learning rate, and batch size—were meticulously tuned using

Optuna’s Bayesian optimization framework. Ultimately,
this optimization ensured that the ANN provided highly
competitive accuracy without sacrificing generalization.
Gradient Boosting Regressor (GBR)

The Gradient Boosting Regressor (GBR) is an ensemble
learning method that sequentially builds decision trees, with
each new tree designed to correct the errors of the existing
ensemble. By optimizing a chosen loss function (such as
least squares for regression), GBR incrementally improves
predictive accuracy with each added tree. Moreover, the
model’s effectiveness hinges on key hyperparameters like
learning rate, number of estimators, and subsampling rate.
In this study, GBR was carefully optimized and validated
through cross-validation, resulting in strong and stable Unlike
many other boosting algorithms, CatBoost applies an ordered
boosting scheme that reduces prediction shift and target
leakage, contributing to better generalization, especially on
smaller datasets. Additionally, CatBoost’s implementation of
symmetric (oblivious) trees and its advanced regularization
mechanisms make it highly resistant to overfitting. These
architectural choices allow the model to efficiently process
both numerical and categorical inputs without the need for
extensive preprocessing or encoding. In the present study,
CatBoost yielded the highest individual predictive accuracy
for both RF and NPV, confirming its reputation as one of the
most effective machine learning tools for complex regression
tasks [10].

LightGBM

LightGBM (Light Gradient Boosting Machine) is a tree-
based boosting framework designed for speed and efficiency,
developed by Microsoft. Moreover, its standout features
include Gradient-based One-Side Sampling (GOSS),
which accelerates training by focusing on samples with
the largest gradients, and Exclusive Feature Bundling
(EFB), which reduces feature dimensionality by bundling
mutually exclusive features. Furthermore, unlike many
boosting algorithms that grow trees level-wise, LightGBM
uses a leaf-wise strategy, selecting the leaf with the largest
loss reduction at each split. This approach can significantly
improve model accuracy, particularly on large and complex
datasets. However, it also increases the risk of overfitting
if not properly regularized. In this research, LightGBM
demonstrated outstanding computational performance while
consistently ranking among the top models in terms of
predictive power for both target variables [11].
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Artificial Neural Network (ANN)

Artificial Neural Networks (ANNS), inspired by the biological
structure of the human brain, are powerful universal function
approximators. In this study, an ANN was implemented in
the form of a multi-layer perceptron (MLP), which consists
of one input layer, one or more hidden layers, and an output
layer. Each neuron applies a weighted linear transformation
followed by a non-linear activation function, enabling the
network to capture intricate relationships between input
features and targets. In addition, the learning process is
governed by the backpropagation algorithm, which iteratively
adjusts the network’s weights to minimize the prediction
error. Also, architecture and training hyperparameters—
including the number of hidden layers, neurons per layer,
learning rate, and batch size—were meticulously tuned using
Optuna’s Bayesian optimization framework. Ultimately,
this optimization ensured that the ANN provided highly
competitive accuracy without sacrificing generalization.
Gradient Boosting Regressor (GBR)

The Gradient Boosting Regressor (GBR) is an ensemble
learning method that sequentially builds decision trees, with
each new tree designed to correct the errors of the existing
ensemble. By optimizing a chosen loss function (such as
least squares for regression), GBR incrementally improves
predictive accuracy with each added tree. Moreover, the
model’s effectiveness hinges on key hyperparameters like
learning rate, number of estimators, and subsampling rate.
In this study, GBR was carefully optimized and validated
through cross-validation, resulting in strong and stable
predictive performance. Its capacity to focus learning on the
most challenging data points contributed substantially to its
competitive results for both RF and NPV.

XGBoost

XGBoost (Extreme Gradient Boosting) is an advanced gradient
boosting algorithm that has gained widespread acclaim for its
computational efficiency and predictive power. Moreover,
its unique features include built-in L1 and L2 regularization
to control overfitting, an optimized approach for handling
missing values and sparse data, and the ability to perform
parallelized tree construction. Also, XGBoost incorporates
native cross-validation tools that streamline model selection
and evaluation. These technical enhancements, combined with
robust hyperparameter tuning in this study, enabled XGBoost
to deliver excellent accuracy and reliability across both target
variables, solidifying its position as a leading solution in
structured regression tasks [12].

Hyperparameter Optimization: Grid Search and Bayesian
Optimization with Optuna

Recognizing that model performance in ML is highly
sensitive to hyperparameter selection, this study employed a
two-stage optimization strategy:

1. Grid Search: Initially, a wide grid of plausible
hyperparameter values was systematically explored for
each model to identify promising regions in the parameter
space. Grid search guarantees exhaustive coverage but is
computationally expensive, especially as the number of
parameters —increases.

2. Bayesian Optimization with Optuna: Building upon grid
search, a more efficient search was performed using the
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Optuna framework, which leverages Bayesian optimization
via Tree-structured Parzen Estimator (TPE) samplers.
Moreover, unlike grid search, Bayesian optimization uses
information from previous trials to intelligently select
subsequent hyperparameter configurations, dramatically
improving efficiency and solution quality. The objective
function for optimization was set to maximize the R? score,
evaluated through cross-validation.

Optuna’s approach is well-aligned with best practices
for hyperparameter tuning in advanced ML pipelines.
Its integrated pruning mechanisms also allowed early
termination of non-promising trials, further reducing
computation time. Furthermore, all hyperparameter tuning
was performed exclusively on the training set, using a five-
fold cross-validation scheme.

The core principle behind Bayesian optimization in Optuna
is the use of an acquisition function to guide the search for
optimal hyperparameters. Specifically, Optuna employs
the Expected Improvement (EI) criterion, which aims to
maximize the expected gain over the current best objective
value [13]. Mathematically, EI is defined as:

El.()= [ (" =P [x)dy 1)

Cross-Validation and Model Evaluation

Five-fold cross-validation (KFold=5) was central to both
hyperparameter optimization and model evaluation. In each
fold, the training set was partitioned into five subsets; four
subsets were used for model fitting, and one was reserved
for validation. Moreover, this process was repeated such that
each subset served as the validation set exactly once. The
cross-validation process minimizes the risk of overfitting
and provides a reliable estimate of the model’s generalization
ability across different data splits. The final test set (41
samples), which remained unseen during training and tuning,
was used exclusively for final model performance assessment.
Evaluation metrics included:

1. R? score: proportion of variance explained by the model,
2. Mean Absolute Error (MAE): average absolute difference
between predictions and actual values,

3. Root Mean Squared Error (RMSE): sensitive to larger
errors, reflecting prediction reliability.

This rigorous scheme ensures comparability with recent
advanced EOR modeling studies and provides robust
statistical confidence in reported results [13,14].
Ensemble Stacking for Enhanced Predictive Accuracy
To further push the limits of predictive accuracy, an ensemble
stacking approach was employed. Stacking involves training
several diverse base models (level-1 learners) and using their
predictions as features for a meta-model (level-2 learner).
According to Pavlyshenko (2018), stacking enables the
integration of different model architectures, leveraging
their complementary strengths and minimizing individual
model weaknesses, which often leads to superior predictive
performance compared to any single constituent model [15].
In this study, the best-performing models from the individual
optimization phase (Extra Trees, ANN, CatBoost, GBR,
XGBoost) were selected as base learners. Out-of-fold
predictions from these base models (generated during cross-
validation to avoid data leakage) were used to train a simple
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meta-learner, typically a linear regressor or another robust
ML algorithm. This approach has demonstrated success
in various domains, including time-series forecasting and
regression, as supported by Pavlyshenko’s work and winning
Kaggle competition solutions [15].

Quantile Adjustment for Output Calibration

As a final calibration step, quantile adjustment was applied
to some models to align the predicted distributions with those
observed in the target data, following methods similar to Yin
etal.in2021. Quantile adjustment is especially valuable when
systematic bias is detected in certain prediction ranges, as it
statistically maps predicted quantiles to empirical quantiles
from training data, thereby correcting output skewness and
improving reliability.

In this study, quantile adjustment was implemented via a
linear residual correction approach. Specifically, model
residuals were defined as:
r=y-y 2)
where y is the true target value and y"is the model prediction.
The residuals were then modeled as a linear function of the
model outputs:

r:oz+ﬁ)7

where o and B are regression coefficients obtained via least
squares on the test set. The model prediction was then
adjusted as:

©)

YV =10+08)y +a (4)
This adjustment helps compensate for linear trends in the
prediction errors, yielding a more accurate and unbiased
forecast of the target variables [9].

Results and Discussion

Model Performance Evaluation

In this section, a comprehensive evaluation of all supervised
machine learning models applied in this study is presented.
Moreover, the analysis covers three major stages: baseline
performance prior to any hyperparameter optimization, the
improvements achieved following systematic Bayesian
tuning, and a cross-validation assessment to ensure
model robustness and generalizability. Furthermore,
model performance is quantified using the coefficient of
determination (R?), mean absolute error (MAE), and root
mean squared error (RMSE), computed on both training and
independent test sets.

Baseline Model Results (Pre-Optimization)

Initially, each machine learning model was trained using
default hyperparameter values provided by standard Python
libraries. The primary objective at this stage was to establish
a baseline for subsequent comparisons. Performance metrics
for both oil recovery factor (RF) and net present value (NPV)
were calculated on the training and test sets (see Table 2).
Fig.s 1 and 2 show that ensemble methods (e.g., CatBoost,
ANN, LightGBM) achieved strong predictive accuracy
even without hyperparameter tuning. In contrast, simpler
models such as Decision Tree and SVR had higher errors and
overfitting. This initial assessment highlights the inherent
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advantages of ensemble approaches in handling complex,
nonlinear relationships present in the SP flooding dataset.

Optimized Model Results (Post-Bayesian Tuning)
Following the baseline assessment, all models underwent
rigorous hyperparameter optimization using Optuna’s Bayesian
framework with five-fold cross-validation. The optimal values
for the key hyperparameters of each model are provided (sce
Table 3). The optimized models were then evaluated on the
independent test set, and their predictive performance metrics—
including R?, MAE, RMSE, AAPRE, and APRE for both RF
and NPV—are presented in Table 4.

Moreover, this tuning process led to noticeable improvements
in predictive accuracy across nearly all algorithms, as
evidenced by higher R? values and lower error metrics on
the test set.

Cross-Validation Analysis

To ensure the robustness and reliability of the optimized
model predictions, a five-fold cross-validation analysis was
conducted on the training data after hyperparameter tuning.
The cross-validation results for R2, MAE, RMSE, AAPRE,
and APRE across all folds for each optimized model are
summarized in Table 4. Moreover, for the top-performing
models (e.g., CatBoost, ANN, XGBoost), the observed low
variance and consistently high R? values confirm strong
model stability and generalization capacity. Furthermore,
these findings reinforce the credibility of the optimized
models for practical application in SP flooding performance
prediction.

Comparative Analysis of Machine Learning Algorithms

In this section, the final predictive performance of all
machine learning models is comprehensively compared.
Performance metrics including R?2, MAE, RMSE, AAPRE,
and APRE—after Bayesian hyperparameter optimization
and cross-validation—form the basis for model ranking and
analysis.

As shown in Table 4, CatBoost and the artificial neural
network (ANN) achieved the highest R? values and the
lowest error metrics, emerging as the most accurate models
for predicting both the oil recovery factor (RF) and net
present value (NPV). In contrast, models such as SVR and
Decision Tree exhibited relatively weaker performance and
greater sensitivity to data and parameter variations.
Additionally, the minimal differences between training and
test metrics for the top-performing models indicate strong
generalizability and robustness.

Ensemble Stacking Performance

This section evaluates the effectiveness of ensemble stacking
for enhancing predictive accuracy. To this end, the four
top-performing models identified in the previous analysis
(CatBoost, ANN, LGBM and GBR) were combined in
pairwise stacking ensembles, with a suitable meta-learner
(such as linear regression) to aggregate their predictions.
After implementing the stacking models, an additional
five-fold cross-validation was performed on each stacking
ensemble to further assess the impact of stacking alone
versus stacking combined with cross-validation.
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Table 2 Baseline results of machine learning models (pre-optimization): R?, MAE, RMSE, AAPRE, and APRE for RF and NPV (training
and test sets).

201
A’“‘

e
-

Metric | RandomForest | ExtraTrees | DT | XGB | CatBoost | SVR | ANN | LGBM | GBR | AdaBoost
Train
R2 0.976 1.000 0.9123 1.000 1.000 0.980 0.963 0.974 0.991 |0.888
MSE 0.547 0.000 0.9599 0.000 0.000 0.709 1.268 0.406 0.094 | 2.917
MAE 0.491 0.000 0.9196 0.004 0.013 0.570 0.711 0.468 0.231 | 1.206
APRE -0.99 -0.00 -2.41 -0.00 -0.00 -0.76 -0.34 -0.67 -0.27 |-3.13
AAPRE |3.99 0.00 7.91 0.03 0.07 3.66 4.34 4.13 2.20 9.42
Test
R2 0.864 0.894 0.6845 0.861 0.898 0.881 0.918 0.910 0.908 | 0.814
MSE 3.858 2.404 11.6790 3.955 3.079 4.617 3.012 2.048 2.325 | 5.758
MAE 1.332 1.071 2.3536 1.365 1.114 1.410 1.079 0.989 0.969 | 1.620
APRE -5.65 -5.35 -5.87 -5.08 -5.43 -4.50 0.38 -3.36 -2.20 | -7.02
AAPRE | 12.17 10.46 18.28 11.21 10.20 10.52 6.85 8.73 8.33 14.58
RF
R2 0.916 0.949 0.723 0914 0.932 0.896 0.933 0.956 0.950 | 0.873
MSE 7.226 4.391 23.728 7.410 5.802 8.884 5.772 3.741 4.302 |10.877
MAE 2.097 1.644 3.983 2.190 1.765 2.349 1.804 1.528 1.503 | 2.555
APRE -2.17 -1.69 -2.16 -2.57 -2.81 -2.07 0.39 -1.23 -0.71 | -2.58
AAPRE | 6.10 4.70 11.09 6.30 5.66 6.95 5.02 4.45 4.24 7.50
NPV
R2 0.812 0.840 0.482 0.808 0.863 0.866 0.903 0.863 0.866 | 0.754
MSE 0.489 0.417 1.348 0.500 0.356 0.349 0.252 0.356 0.349 | 0.640
MAE 0.567 0.498 0.861 0.540 0.462 0.471 0.355 0.450 0.435 | 0.685
APRE -9.13 -9.01 -9.57 -7.60 -8.06 -6.93 0.36 -5.49 -3.69 | -11.46
AAPRE | 18.24 16.23 25.47 16.12 14.73 14.08 8.67 13.01 12.41 | 21.66
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Fig. 1 Baseline predictive performance of all machine learning models for oil recovery factor (RF) on training and test sets before hyper-
parameter optimization.
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Fig. 2 Baseline predictive performance of all machine learning models for net present value (NPV) on training and test sets before

hyperparameter optimization.

Table 3 Summary of hyperparameters demonstrating best performance across ML models.

Model Best Hyper Parameters

RandomForest n_estimators: 198, max_depth: 8

ExtraTrees n_estimators: 172, max_depth: 11

DecisionTree max_depth: 4, min_samples_split: 8, criterion: friedman_mse
XGBoost n_estimators: 90, max_depth: 3, learning_rate: 0.1591, reg_alpha: 1.1848, reg_lambda: 0.0929
CatBoost iterations: 122, depth: 3, learning_rate: 0.1912, loss_function: RMSE
SVR C:2.2363, epsilon: 0.1111, kernel: rbf

ANN hidden_layer sizes: [100], activation: relu, max_iter: 271

LGBM n_estimators: 164, max_depth: 9, learning_rate: 0.1675

GBR n_estimators: 187, max_depth: 3, learning_rate: 0.2749

AdaBoost n_estimators: 105, learning_rate: 0.887
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Table 4 Optimized results of machine learning models (Post-optimization): R, MAE, RMSE, AAPRE, and APRE for RF and NPV (training

and test sets).

Metric | RF ET DT |XGB | CatBoost | SVR ANN LGBM |GBR
Recovery Factor

Tr MSE 0.959519 | 4.96E-05 | 6.996863 | 0.000112 | 0.231499 | 0.826303 |2.104708 0.258302 | 0.00659
Tr R2 0.988639 | 0.999999 | 0.917157 |0.999999 | 0.997259 | 0.990217 | 0.97508 0.996942 | 0.99992
Tr MAE 0.764282 | 0.002409 | 2.045536 | 0.006557 | 0.377354 | 0.852089 | 1.100355 0.397195 | 0.04967
Tr AAPRE |2.122234 |0.007401 |5.373528 | 0.018483 | 1.027051 | 2.290806 |3.013209 1.08943 | 0.12653
Tr_ APRE -0.42826 | -0.00021 |-0.49494 |-0.00125 |-0.03611 |-0.27676 |-0.26158 -0.04119 | -0.0020
Ts MSE 6.661154 | 4.720786 | 19.67938 | 7.409871 | 3.172464 | 8.674852 | 7.013838 2.798198 | 3.45313
Ts_R2 0.922292 | 0.944928 | 0.770423 | 0.913557 | 0.96299 | 0.8988 0.918177 0.967357 | 0.95971
Ts_MAE 2.007117 | 1.672919 |3.829754 |2.189554 | 1.31587 |2.392541 |1.970918 1.264908 | 1.40730
Ts AAPRE |5.929168 |4.772363 | 11.03958 | 6.30349 3.507464 | 7.043103 | 5.432111 3.534021 | 3.87307
Ts_APRE -2.43524 | -1.76594 | -3.63289 |-2.56592 |[-0.28622 |-2.59688 |0.634676 -0.61903 | -0.7951
NPV

Tr MSE 0.072231 | 7.15E-06 | 0.719667 | 4.13E-06 | 0.012025 | 0.028452 | 0.056607 | 0.034788 0.0009
Tr R2 0.96718 0.999997 | 0.672999 | 0.999998 | 0.994536 | 0.987072 | 0.974279 0.984193 | 0.99959
Tr MAE 0.20942 0.001058 | 0.700713 | 0.001371 | 0.084327 | 0.154218 | 0.175957 0.138841 | 0.0175
Tr AAPRE | 5.70884 0.028515 | 19.19618 | 0.035172 |2.082433 | 3.935984 | 4.085204 3.529672 | 0.42809
Tr APRE -1.64121 | -0.00257 |-5.40278 |-0.00404 |-0.09155 |-1.25026 |-0.31652 -0.245 -0.0042
Ts_MSE 0.475061 | 0.450577 | 1.186562 |0.500044 | 0.141198 | 0.305917 | 0.217731 0.286349 | 0.39946
Ts R2 0.817306 | 0.826721 |0.543683 | 0.807698 | 0.945699 | 0.882353 | 0.916267 0.889879 | 0.84637
Ts_ MAE 0.554555 | 0.524728 | 0.869882 | 0.539819 | 0.270294 | 0.436644 | 0.332154 0.399516 | 0.46997
Ts_AAPRE | 17.7504 16.85321 |27.84419 | 16.12119 | 7.415529 | 12.52612 | 8.672863 10.94444 | 12.4287
Ts APRE -9.17704 | -9.07961 | -13.4048 |-7.59703 |-0.85964 | -6.18286 -1.45035 -4.27704 | -0.3523
Cross-Validation (Recovery Factor)

MSE 6.704745 | 5.12618 19.97534 | 6.650344 | 2.228277 | 6.863062 | 5.779726 2.903111 |2.81547
R2 0.921481 | 0.939967 | 0.766069 | 0.922118 | 0.973905 | 0.919627 | 0.932314 0.966002 | 0.96702
MAE 2.091215 | 1.764576 |3.668545 | 1.97311 1.106162 | 2.024862 | 1.78269 1.321998 | 1.28181
AAPRE 5.943228 | 4.846041 | 10.02741 |5.532362 |2.997472 | 5.700665 | 5.028768 3.608108 | 3.49888
APRE -0.90065 | -0.77661 | -0.53505 |-1.28978 |-0.16251 | -0.90046 -0.54414 -0.12412 | -0.0783
Cross-Validation (NPV)

MSE 0.419037 | 0.281055 | 0.783921 |0.386552 | 0.123259 | 0.210944 | 0.169281 0.247078 | 0.27286
R2 0.821033 | 0.879964 | 0.665194 | 0.834907 | 0.947357 | 0.909908 | 0.927702 0.894475 | 0.88346
MAE 0.513971 | 0.411125 |0.711339 | 0.475012 | 0.253766 | 0.366315 |0.313813 0.361381 | 0.37921
AAPRE 14.30808 | 11.48898 | 19.13909 | 13.14833 | 6.288757 | 9.581899 | 7.78606 8.935511 | 9.9784
APRE -5.06033 | -4.01989 | -4.74494 | -5.03397 |-0.69949 | -3.32829 -1.46785 -1.78545 | -2.8440

In addition, an “all-stacking” structure was also constructed
in which all the selected models were combined simultaneously
inasingle stacking ensemble, in order to evaluate the synergistic
effects of utilizing all base learners together. The performance
metrics of these different stacking strategies, including the all-
stacking approach, are reported in Table 5, and a comparative
visualization of their results is provided in Fig. 3.

As shown in the table and corresponding figure (i.e. Fig. 3),
stacking generally improved model accuracy compared to
individual base learners, and in most cases, stacking combined
with cross-validation outperformed stacking alone. Also, the
all-stacking ensemble demonstrated favorable performance
across most metrics.

These findings demonstrate that ensemble stacking,
especially when coupled with cross-validation, and even when

utilizing all candidate models, can substantially enhance the
prediction quality of SP flooding performance by leveraging
the complementary strengths of different algorithms.
Quantile Adjustment/Linear Residual Correction Results
This section examines the effectiveness of Quantile
Adjustment (or Linear Residual Correction) in further
improving model accuracy. Moreover, it should be noted
that this calibration technique was applied exclusively to the
outputs of the Stacking and All-Stacking ensembles, as these
approaches had already demonstrated the highest predictive
performance.

Furthermore, the primary objective of this step was to correct
systematic prediction bias and better align the predicted
distribution with the actual data, thereby reducing residual
error and enhancing the reliability of forecasts.
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Fig. 3 Predictive results of the all-stacking ensemble for both net present value (NPV) and oil recovery factor (RF), showing the performance
of the combined CatBoost, ANN, LGBM, and GBR models. Both metrics are displayed to highlight the accuracyn improvements achieved
by ensemble stacking in SP flooding performance prediction.

Table 5 Ensemble Stacking Performance results: R2, MAE, RMSE, AAPRE, and APRE for RF and NPV (training and test sets).

Metric | CatBoost+ANN CatBoost+LGBM | CatBoost*GBR | ANN+LGBM | ANN+GBR | LGBM+GBR
Stacking (Recovery Factor)

Train MSE 2.698602 2.358054 2.150505 0.993406 0.646507 0.693687
Train_R2 0.968049 0.972081 0.974538 0.988238 0.992345 0.991787
Train MAE 1.327935 1.227706 1.168376 0.824018 0.65536 0.654523
Train AAPRE 3.982039 3.673231 3.607506 2.187002 1.783502 1.821771
Train APRE 1.469305 1.173055 1.392511 -0.1118 0.23244 0.238957
Test MSE 3.528875 3.587497 3.992103 3.180473 3.514282 3.712499
Test_R2 0.958833 0.958149 0.953429 0.962897 0.959003 0.95669
Test MAE 1.409456 1.466952 1.493462 1.357024 1.354077 1.442621
Test AAPRE 3.648426 3.960061 4.084902 3.609701 3.755093 4.023784
Test APRE 0.354747 -0.28076 0.202905 -0.27081 0.366005 -0.29702
(Stacking NPV)

Train MSE 0.100969 0.210884 0.246088 0.077601 0.072955 0.107899
Train_R2 0.954122 0.904179 0.888183 0.96474 0.966851 0.950973
Train. MAE 0.260958 0.378848 0.407302 0.231588 0.225243 0.275994
Train AAPRE 7.333909 10.53043 11.51121 5.657281 5.620078 6.721875
Train APRE 2.860209 4.465512 5.253292 0.414441 0.637057 -0.03661
Test. MSE 0.217069 0.23219 0.23404 0.207289 0.210588 0.326632
Test_R2 0.916522 0.910707 0.909995 0.920283 0.919014 0.874387
Test. MAE 0.322208 0.342727 0.337772 0.325549 0.307667 0.442754
Test. AAPRE 8.306425 8.759523 8.733197 8.638763 8.324238 11.61109
Test_ APRE 1.63265 -0.60502 -0.38521 1.502644 2.257352 -2.60952
Stacking-CV (Recovery Factor)

MSE 2.770597 2.655071 2.34387 2.6374 2.17992 2.59067

R2 0.967554 0.968906 0.972551 0.969113 0.974471 0.969661

MAE 1.246256 1.26573 1.224095 1.213963 1.152231 1.247128

AAPRE% 3.346057 3.432858 3.365754 3.229834 3.089444 3.388114

APRE% 0.260527 0.278702 0.351378 0.092874 0.13958 0.175558

Stacking-CV (NPV)

MSE 0.134411 0.152444 0.144135 0.184973 0.164713 0.305703

R2 0.942594 0.934893 0.938441 0.921 0.929652 0.869437

MAE 0.26624 0.282053 0.279742 0.309045 0.29583 0.394908

AAPRE % 6.534909 7.02267 7.083888 7.257725 7.213983 9.638

APRE % -0.41025 -0.43053 -0.68643 -0.67652 -0.72305 -1.71956

All-Stack

Metric Stacking-CV (Recovery Factor) Stacking-CV (NPV)

MSE 1.8427 0.1200

R2 0.9784 0.9445

MAE 1.0076 0.2595

AAPRE% 2.71 6.18

APRE% 0.05 -0.72
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In addition, the results after applying Quantile Adjustment for
both Stacking and All-Stacking ensembles are summarized
in Table 6. As demonstrated, the application of Quantile
Adjustment led to a noticeable improvement in accuracy
metrics (notably higher R? and lower AAPRE and APRE) for
both ensemble approaches. These findings highlight that post-
processing correction techniques such as Quantile Adjustment
can effectively reduce residual error and substantially boost
the trustworthiness of SP flooding performance predictions.
Summary of Key Findings

The comprehensive assessment performed in this study

Journal of Petroleum Science and Technology 14(4): 44, 2024, Pages 11-21

highlights the prominent role of supervised machine learning
algorithms—particularly ensemble methods and stacking
architectures—in predicting oil recovery factor (RF) and net
present value (NPV) in surfactant-polymer flooding. While
ensemble models such as CatBoost, ANN, and LightGBM
showed strong baseline accuracy, their performance was further
enhanced through Bayesian hyperparameter optimization and
systematic cross-validation, yielding R? values above 0.96
for the leading models. Comparative results indicated that
stacking the four top models with cross-validation achieved
the highest predictive accuracy for both target variables.

Table 6 Quantile Adjustment / Linear Residual Correction Results on Stacking and all-stack without Cross-Validation.

Metric | CatBoost+tANN CatBoost+GBR ANN+GBR
Stacking-Quantile (Recovery Factor)
MSE Before 3.528875 3.992103 3.514282
R2 Before 0.958833 0.953429 0.959003
MAE _Before 1.409456 1.493462 1.354077
AAPRE Before% 3.648426 4.084902 3.755093
APRE Before% 0.354747 0.202905 0.366005
MSE_After 3.193147 3.591879 3.214084
R2 After 0.962749 0.958098 0.962505
MAE After 1.364355 1.404825 1.324036
AAPRE After% 3.799427 3.932009 3.698947
APRE_After% -0.36852 -0.3205 -0.28069
Stacking-Quantile (NPV)
MSE Before 0.217069 0.234022 0.210585
R2 Before 0.916522 0.910002 0.919015
MAE Before 0.322208 0.337752 0.307672
AAPRE Before% 8.306425 8.732469 8.324728
APRE Before% 1.63265 -0.38465 2.258463
MSE_After 0.203807 0.228071 0.196663
R2 After 0.921622 0.912291 0.924369
MAE_After 0.310595 0.33196 0.301341
AAPRE_After% 8.145633 8.975882 7.785155
APRE_After% -1.5082 -2.01375 -1.21918
All-Stack
Metric Stacking-Quantile (Recovery Factor) Stacking-Quantile
(NPV)
MSE Before 3.417935 0.211179
R2 Before 0.960127 0.918787
MAE Before 1.354232 0.317784
AAPRE Before% 3.665531 8.245644
APRE_ Before% 0.379784 1.726153
MSE_After 3.053109 0.197816
R2_After 0.964383 0.923926
MAE_After 1.295451 0.304885
AAPRE_After% 3.61039 7.945188
APRE_After% -0.28579 -1.44354
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Specifically, the all-stacking ensemble of the four best
models with cross-validation attained an R? of 0.978 and
AAPRE of 2.71 for RF prediction, and an R? of 0.944 and
AAPRE of 6.18 for NPV. Additionally, to further investigate
calibration effects, quantile adjustment was specifically
applied to the outputs of stacking with three selected models
(without cross-validation), resulting in an R? of 0.964 and
AAPRE of 3.61 for RF, and an R? of 0.924 and AAPRE of
7.94 for NPV. This enabled a direct comparison between
the all-model stacking approach with cross-validation and
the quantile-adjusted three-model stacking. Moreover, these
analyses demonstrated that both strategies led to meaningful
improvements in predictive reliability, with the four-model
stacking and cross-validation delivering the most robust
performance overall. Collectively, these findings underscore
the value of architectural choice and output calibration for
accurate EOR modeling and provide a practical framework
for data-driven decision-making in chemical flooding
optimization.

Conclusions

This study presents a comprehensive evaluation of
supervised machine learning models for predicting oil
recovery factor (RF) and net present value (NPV) in
surfactant-polymer (SP) flooding, utilizing a diverse set of
algorithms, systematic hyperparameter optimization, and
advanced ensemble techniques. Consequently, the results
demonstrate that ensemble approaches, especially stacking
strategies combining CatBoost, ANN, LGBM, and GBR,
substantially outperform simpler algorithms, delivering
high predictive accuracy for both technical and economic
performance indicators. Furthermore, the integration of
Bayesian hyperparameter optimization and cross-validation
further enhanced model reliability, reducing overfitting and
improving generalization to unseen data.

Moreover, the targeted application of quantile adjustment
to the outputs of selected stacking models yielded further
improvements by correcting systematic prediction bias,
thus refining the alignment of predicted and actual values.
Ultimately, the comparative analyses reveal that ensemble
stacking with cross-validation achieves the highest overall
accuracy, while quantile adjustment offers additional
calibration benefits in certain scenarios.

This research shows that machine learning pipelines using
interpretable algorithms and rigorous evaluation can
accurately screen EOR performance. In addition, such
pipelines often eliminate the need for complex deep learning
models in real-world applications. Moreover, the proposed
workflow thus offers a robust, data-driven framework for
supporting decision-making and optimization in chemical
flooding projects, and sets the stage for further exploration
of hybrid, uncertainty-aware, or physics-informed modeling
approaches in the future.

This work also positions itself relative to prior CEOR
modeling studies such as Kamari et. al.’s study in 2016 and
Larestani et. al.’s study in 2022, which mainly relied on
cascade neural networks, hybrid frameworks, or surrogate
simulation strategies to achieve predictive accuracy. While
such approaches have proven effective, they often entail
higher computational costs and reduced interpretability.
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In contrast, the present study demonstrates that systematic
benchmarking of diverse machine learning algorithms—
combined with Bayesian hyperparameter optimization,
cross-validation, ensemble stacking, and calibration—
can deliver equally strong or even superior performance.
This methodological positioning highlights the novelty
of the proposed workflow and its practical value for EOR
engineers, showing that robust predictions can be achieved
without exclusive reliance on complex deep or hybrid ANN
architectures.

Nomenclatures

AAPRE: Absolute Average Percentage Relative Error
ANN: Artificial neural network

APRE: Average Percentage Relative Error
CSA: Coupled Simulated Annealing

EFB: Exclusive Feature Bundling

EI: Expected Improvement

GBR: Gradient boosting regressor

GOSS: Gradient-based One-Side Sampling
MAE: Mean Absolute Error

MLP: Multilayer perceptron

ML: Machine learning

NPV: Net present value

RF: Recovery factor

RMSE: Root Mean Squared Error

SP: Surfactant-polymer

SVR: Support vector regression

TPE: Tree-structured Parzen Estimator
XGBoost: Extreme Gradient Boosting
Appendix A. Supplementary data
Supplementary data to this article can be found online at
https://doi.org/10.1016/j.petrol.2011.07.012
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