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Abstract

Geosteering is an essential method employed in oil and gas drilling, particularly for horizontal wells, to precisely
locate the wellbore within hydrocarbon-rich formations. To carry out this process, the gamma-ray logs from the
laterals are matched with logs from a reference vertical well to position the lateral in the desired path accurately. Nu-
merous studies have been carried out in the field of geosteering, focusing on the application of machine learning and
the creation of automated geosteering methods. Due to the high cost of repeated use of steering, it can be helpful to
establish a logical mathematical correlation between two or more parameters for movement within the reservoir. This
study investigates the relationship between Rate of Penetration (ROP) and gas ratio data in three laterals drilled in a
heterogeneous limestone reservoir in Iran by plotting normalized ROP vs. normalized gas ratio. Geomaster software
is used to direct the geosteering process in order to ascertain the reservoir’s depth. Once the ROP and gas ratio data
have been normalized and outliers removed, different models such as linear, polynomial, power, and exponential
are utilized in MATLAB. As a result, we can observe that for the majority of laterals, the second-degree polynomial
model offers the best correlation. Also, the presence of heterogeneity affects some results of laterals. These results
can be applied to reduce the expenses associated with recurrent geosteering operations, enable the drilling of new or
extended laterals, and optimize drilling operations in the field.
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Introduction

The method of geosteering involves changing a
directional or horizontal wellbore’s trajectory to optimize
contact with a reservoir’s hydrocarbon-bearing zones.
There are two main approaches to accomplish this: one
model-based and the other strat-based (Fig. 1).

This technique is crucial for optimizing production and
reducing the cost of drilling operations. Instruments like
Measurement While Drilling (MWD) and Logging While
Drilling (LWD) offer real-time information, allowing for
modifications to the well’s path according to the features

of the reservoir.

ROP is the distance drilled per unit of time. Several
factors influence it, such as mud weight, weight on bit,
and the lithology of the formation [2]. ROP is used to
evaluate the properties of the formation and ascertain the
target depth. Another critical parameter in this paper is the
gas ratio, which may deviate due to changes in lithology
or drilling events in the well, such as introducing drilling
fluid into the formation, changes in ROP, or variations
in bit size.
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Fig. 1 Model-based and Strat-based procedure, [1].
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Higher ROP and gas ratio readings are the consequence of
porosity and hydrocarbons in reservoir layers. The reservoir
and its lithology can be somewhat identified using this
relationship. For example, soft formations show high ROP,
while shales exhibit a lower gas ratio [3.,4].

In recent years, researchers have become interested in
improving geosteering, including predicting a log (Fig. 2)
based on offset wells and calculating the true stratigraphic
thickness (TST) to the drilled point correlated with the
LWD log through matching. This work has improved well
placement in the reservoir by enhancing the accuracy of
subsurface models and their dynamic updating [5].
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Fig. 2 Well log prediction process, [5].
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Creating an automatic geosteering algorithm using a
stratigraphic misfit heatmap (Fig. 3) is an innovative
approach in geosteering. This algorithm can effectively detect
faults and calculate the probability of the well being placed
in the desired path. Additionally, it can establish correlations
[6]. Control points can be utilized to improve the accuracy
of automated geosteering when it produces unreasonable
interpretations [7]. Estimating geological boundaries using
well-log data can lead to automatic steering [8].
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Fig. 3 Lateral and reference well gamma-ray correlation in strati-
graphic misfit heatmap, [6].

By employing relevant models, a support system is utilized
to enhance geological uncertainties [9| or making appropriate
decisions regarding drilling operations [10]. The Bayesian
Decision Network is another system used in geosteering that
displays the errors of the instruments and geological events
[11].

To achieve the goals of geosteering, the Stochastic Monte
Carlo method [12] or Bayesian Network [13] can be used
to solve inverse geosteering problems. Resistivity tools play
an essential role in geosteering, leading to lateral guidance
in complex reservoirs and providing subsurface information
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[14,15].

3D maps have made it possible to create a better view of
reservoirs, wells, and geological layering features [16,17].
Drilling costs can be reduced by developing a 3D geosteering
system that combines engineering and geology [18] and
geological interpretation can be conducted using its features
[19].

Logs between lateral and typewell were correlated using
machine learning to build an autonomous geosteering model
for better well siting in the target path. Finally, the advantages
of this method include reducing human errors and increasing
operational efficiency through automated steering [20]. Machine
learning was also used to predict lithology by correlating drill
string and bit data [21] or utilizing LWD data [22].

Although advances in machine learning and automation have
significantly improved geosteering accuracy, the high costs
associated with this process remain a challenge. For this
reason, developing predictive models that correlate drilling
parameters such as the ROP and gas ratio with reservoir
characteristics can significantly reduce the need for repeated
geosteering. Studying three well data in a reservoir and
obtaining correlations with different accuracies can help us
identify a heterogeneous reservoir and its geomechanical
properties, including resistance and stresses on the rock, as
well as identify faults, natural fractures, anticlines, etc.
The purpose of this investigation is to developing a correlation
between ROP and gas ratio reservoir data from three laterals
drilled in a heterogeneous limestone reservoir in Iran. The
average WOB in drilling the reservoir layer for laterals I,
2, and 3 is 12, 9, and 12 klIb, respectively. The goal is to
establish predictive models to guide future lateral drilling in
the field without requiring costly geosteering processes. We
used various mathematical models to assess the accuracy of
these correlations and determine the most reliable method for
optimizing drilling operations.

Methodology

Field Overview

The field under study is a heterogeneous limestone reservoir
located in Iran. Three laterals were drilled and geosteered
using Geomaster software to accurately position the
wellbores within the hydrocarbon-bearing zones of the
reservoir. During the drilling of these laterals, information on
the ROP and gas ratio was gathered.

To evaluate initially the reservoir and find the depth of
the desired layer, first, we used ROP and gas ratio data in
reference (vertical) well like in Fig. 4. In this Figure, we saw
approximately that both charts at Measurement depth (MD)
=2600 m to MD=2700 m (in vertical well, MD equals True
Vertical Depth (TVD)) have increased. So, the reservoir layer
may be placed at this depth; however, it should be geosteered
for a more accurate assessment.

Geosteering Process

The geosteering procedure for the three laterals was guided
by Geomaster software. By analyzing gamma-ray logs,
we accurately determined the exact depth and thickness of
the reservoir. The gamma-ray logs from the laterals were
matched with logs from a reference vertical well to improve
the accuracy of the wellbore placement.
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Fig. 4 MD graphs in terms of ROP and gas ratio in reference well
of lateral 1.

As seen in Fig.s 5, 6, and 7, this matching method enabled
us to adjust the well trajectory in response to the real-time
determination of reservoir boundaries. In all the laterals,
according to their geosteering, the reservoir layer was located
between Sar. 3 and Sar. 4-7, and the green area of this layer
indicates the desired portion. Furthermore, in lateral 1, as
analyzed in Fig. 4, the reservoir depth is approximately.

Data Normalization and Qutlier Removal

Using real data and the presence of heterogeneity create outliers
that must be removed. Equation 1 was used to normalize the
data between 0 and 1. This normalization eliminated the effects
of scale differences between the two datasets.

The first and third quartile methods were then applied to
eliminate outliers. This method involved calculating the
interquartile range (IQR) and removing data points that
fell outside 1.5 times the IQR above the third quartile or
below the first quartile (The reservoir data obtained through
geosteering has been utilized in this project.).
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Fig. 5 Geosteering of lateral 1.
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Fig. 6 Geosteering of lateral 2.
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Fig. 7 Geosteering of lateral 3.
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Gas ratio (@ MD=3080 m): 0.633 [-]
Minimum gas ratio in total data: 0.117
Maximum gas ratio in total data: 42.511
Maximum gas ratio in total data: 42.5

0.633-1.117

=——=0.01217
42.511-1.117

gas —ratio,,, 2)
ROP (@ MD=3080 m): 10.86 [m/hr]
Minimum ROP in total data: 1.68

Maximum ROP in total data: 29.27

rop 1086168 _

= =0.3327
2927-1.68

)

The upper and lower limits of the gas ratio and ROP are
shown in Table 1:



S. Fathi Hafshejanil et al.

32

Table 1 Removing outlier data using the first and third quartile method in Excel-lateral 1
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Parameter Command in Excel Gas ratio [-] ROP [m/hr]
First Quarter QUARTILE.EXC( : ,1) ( First Quarter Command) 0.2249 0.15

Third Quarter QUARTILE.EXC( :,3) ( Third Quarter Command) 0.3455 0.399

50% Third Quarter-First Quarter 0.1206 0.249
Upper limit Third Quarter+(1.5%50%) 0.5265 0.772
Lower limit First Quarter-(1.5*50%) 0.0439

Only data larger than the upper limit were eliminated as out-
liers because the ROP lower limit is negative. Finally, as an
example, a portion of the calculations related to normalizing

data and removing outliers for lateral 1 is shown in Table 2

(Red data are outliers):

Table 2 A portion of the information and calculations of lateral 1

MD [m] Gas ratio [-] ROP [m/hr] Normalized Gas ratio Normalized ROP
3080 0.633 10.86 0.012171534 0.33272925
3081 3.297 13 0.075010615 0.410293585
3082 6.324 15.39 0.146412228 0.496919174
3083 9.728 12.62 0.226706609 0.396520478
3084 15.041 12.64 0.352030948 0.397245379
3085 20.039 11.97 0.469924989 0.372961218
3086 24.079 9.49 0.565221494 0.283073577
3087 24.201 8.97 0.568099259 0.264226169
3088 11.491 5.87 0.268292683 0.151866618
3089 6.474 15.76 0.149950465 0.51032983
3090 7.619 20.35 0.176959004 0.676694455
3091 7.591 28.47 0.176298533 0.971003987
3092 7.38 25.51 0.171321413 0.863718739
3093 9.784 27.54 0.228027551 0.937296122

* A negative value indicates no lower limit.

Model Fitting and Analysis

Following the normalization and outlier removal, several
models, such as linear, second-degree polynomial, power,
and exponential, were applied to the data using MATLAB.
The models were evaluated based on their R? value (which
measures the fit goodness) and the sum squared error (SSE).
In addition, the model that best suited the data was determined
to have the highest R? value and the lowest SSE. This process
was repeated for each of the three laterals to determine the
most accurate model for each case.

For a more accurate and better analysis of the data, we used
the graphs of MD in terms of gas ratio and ROP. We then
proceeded to analyze the trends observed in these graphs for
each lateral, as illustrated in Fig. 8 to Fig. 10 (The trends
indicated in these figures should be observed and verified
for each lateral in both MD vs. Gas ratio and MD vs. ROP
graphs).

For better interpretation, the average data was calculated
and plotted every 10 meters (The unclear parts in the graphs

have been removed as they are outside the production zone
according to their geosteering). Other methods, such as
smoothing techniques, will also show the same trends.

Results

First, we plotted the normalized ROP vs. normalized gas
ratio. Subsequently, different models were examined to
determine the most suitable match for each lateral data set.
For lateral 1, the second-degree polynomial model offered
the most accurate correlation between ROP and gas ratio,
with an R? value of 0.095 and an SSE of 12.77 (Table 3 and
Fig. 11). In lateral 2, the second-degree polynomial model
again provided the best fit, with an R? value of 0.344 and
an SSE of 5.76 (Table 4 and Fig. 12). However, in lateral
3, the power model proved to be the most accurate, with an
R? value of 0.207 and an SSE of 4.34 (Table 5 and Fig. 13).
As it is clear from the results, the lateral 2 correlations have
higher accuracy than the other two laterals (All equations are
dimensionless).
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Fig. 8 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 1.
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Fig. 9 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 2.
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Fig. 10 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 3.

Table 3 Accuracy and error of correlations - lateral 1.

Fit name Data Best fit type SSE R?
Lateral 1 (total data) ROP vs. Gas ratio Linear 13.01 0.078
dd -pol i-
Lateral 1 (total data) ROP vs. Gas ratio :le cond degree-polynom 12.77 0.095
Lateral 1 (total data) ROP vs. Gas ratio Power 12.79 0.094
Lateral 1 (total data) ROP vs. Gas ratio Exponential 12.9 0.086
08 T T T T T T T

Results

T T T
¢ Normalzed ROP vs. Normalized_GAS_ratio .
——— Second degree of Polynomial Linear model Poly2:
v - f(x) = p1"A2 + p2'x + p3
Coefficients (with 95% confidence bounds):
pl= 179 (0.6462, 2.935)
p2= -0.5057 (-1.173,0.1616)
p3= 02589 (0.1648,0333)

£
@
T

Goodness of fit:
SSE: 12.77
R-square: 0.09506
Adjusted R-square: 0.09152
RMSE: 0.1581

Normalized_ROP
=) =)
) =
T T

0.05 0.1 0.15 02 0.25 03 0.35 04 045 05
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Fig. 11 Graph and equation of second degree-polynomial model for lateral 1.
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Table 4 Accuracy and error of correlations - lateral 2.
Fit name Data Best fit type SSE R?
Lateral 2 (total data) ROP vs. Gas ratio Linear 5.79 0.341
Lateral 2 (total data) ROP vs. Gas ratio Second degree-polynomial | 5.76 0.344
Lateral 2 (total data) ROP vs. Gas ratio Power 5.77 0.343
Lateral 2 (total data) ROP vs. Gas ratio Exponential 6.01 0.316
05 ! ! T T T T T T —  Results
' . . . . . ¢ Normalized ROP vs. Normalized_GAS_ratio Linesr model Poly2:
vl .. vt e . - Set:ond degree of Polynomial . i () = p1*x"2 + p2 + p3
o » LS o * Do . ¥ Coefficients (with 95% confidence bounds):
&) pl= -0.6804 (-1.292, -0.06829)
| p2= 09945 (0.7216, 1.267)
E p3=0.01784 (-0.009605, 0.04528)
g Goodness of fit:
(<] SSE: 5.762
= R-square: 0.3444
Adjusted R-square: 0.3428
RMSE: 0.08219
1 1 1
0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45
Normalized_GAS_ratio
Fig. 12 Graph and equation of second degree-polynomial model for lateral 2.
Table 5 Accuracy and error of correlations - lateral 3.
Fit name Data Best fit type SSE R?
Lateral 3 (total data) ROP vs. Gas ratio Linear 4.45 0.187
Lateral 3 (total data) ROP vs. Gas ratio Second degree-polynomial 4.36 0.204
Lateral 3 (total data) ROP vs. Gas ratio Power 4.34 0.207
Lateral 3 (total data) ROP vs. Gas ratio Exponential 4.39 0.197
T e T T T T T T Results
04 . . = . . *  Normalized_ROP vs. Normalized_GAS_ratio | ] General model Powes2:
fx) = 8" b+c
o L Coefficients (with 93% confidence bounds):
QL 2z 03205 (0231, 04009
UI b= 166 (115217
o c= 01061 (008217012
g Goodness of fit:
S SSE: 4342
A0 - R-square: 0.207
Adjusted R-square: 0.2047
i RMSE: 007973
0
0 0.1 0.2 03 0.4 0.5 0.6 0.7
Normalized_GAS_ratio

Fig. 13 Graph and equation of power model for lateral 3.

According to the MATLAB output, the equation of the best
fit for lateral 1 is:

'(x)=1.79*x°>—0.5057*x +0.2589 (4)
The best correlation equation for lateral 2 is:
f'(x)=—0.6804%x>40.9945%x +0.01784 (%)
The best correlation equation of lateral 3 is:
£'(x)=0.3205*x " 4-0.1061 (6)

Because the correlations from the analysis of the total data
were not sufficiently accurate, we analyzed the data based on
different sections of MD graphs (according to Fig. 7 to Fig. 9),
including the increasing, constant, and decreasing sections.

For example, when we examine the increasing section, it
indicates that in one part of the layer, both ROP and gas ratio
parameters are increasing. It is likely that we have entered
the reservoir layer because the drilling rate in the producing
layer has increased due to the presence of porosity and fluid.
Furthermore, the existence of hydrocarbons enhances the
measured gas ratio. The analysis showed that the decreasing
sections provided more accurate correlations for laterals 1
(Table 6 and Fig. 14) and 2 (Table 7 and Fig. 15), while the
increasing section offered better accuracy for lateral 3 (Table
8 and Fig. 16). In addition, this variation is likely due to
the heterogeneous nature of the reservoir, which introduces
variability in the correlation between ROP and gas ratio.
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Table 6 Accuracy and error of best correlations for increasing, constant, and decreasing sections - lateral 1.

Fit name Data Best fit type SSE R?
Lateral 1 (increasing section) ROP vs. Gas ratio Second degree-polynomial 3.566 0.0153
Lateral 1 (constant section) ROP vs. Gas ratio Power 1.515 0.015
Lateral 1 (decreasing section) ROP vs. Gas ratio Second degree-polynomial 0.821 0.582
1 F T T T -l T T T T ] Results
L4 ‘ *  Normalized ROP vs. Narvpalized_GAS_ratio Linear modelPoly2:
Lateral 1 (decreasing section) ) = plxA2 s p2ix+ 3
o 081 7 Coefficients (with 93% confidence bounds):
8 % pl= -1.778 (-2912,-0.6441)
| 2= 2448 (1252, 3.643)
E 06 - I z3= 001732 (-0.2656, 0.2309)
©
& Goodness of fit:
804 1 5604211
R-square: 0.5817
02 = Adjusted R-square: 0.5495
A RMSE: 0.1777
1 1 1 1 1 L 1 1 1 1
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized_GAS _ratio
Fig. 14 Graph and equation of second degree-polynomial model (decreasing section) for lateral 1.
Table 7 Accuracy and error of best correlations for increasing, constant, and decreasing sections - lateral 2.
Fit name Data Best fit type SSE R?
Lateral 2 (increasing section) ROP vs. Gas ratio Power 0.961 0.46
Lateral 2 (constant section) ROP vs. Gas ratio Power 1.353 0.08
Lateral 2 (decreasing section) ROP vs. Gas ratio Second degree-polynomial 0.389 0.657
osF 7 T T T T T T T ——= Results
) *  Normalized ROP vs. Normalized GAS_ratio li )
. N . inear model Poly2:
. Lateral 2 (decreasing section) ) = pTxA2 + 2 + p3
L J P2+ pZc+
o e Coefficients (with 95% confidence bounds):
8 pl= -0.6858 (-2.927,1.555)
o 03[ _ p2= 1489 (0.7114,2.267)
g p3= 001346 (-003891, 007784)
T ool J
E 02 Goodness of fit:
S SSE: 03887
01} - R-square: 0.6573
Adjusted R-square: 0.6443
RMSE: 0.08564
0 L L L 1 1 1 1 L -
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Normalized_GAS_ratio
Fig. 15 Graph and equation of second degree-polynomial model (decreasing section) for lateral 2.
Table 8 Accuracy and error of best correlations for increasing, constant, and decreasing sections of lateral 3.
Fit name Data Best fit type SSE
Lateral 3 (increasing section) | ROP vs. Gas ratio Second degree-polynomial 0.495 0.554
Lateral 3 (constant section) ROP vs. Gas ratio Second degree-polynomial 2.14 0.235
Lateral 3 (decreasing section) | ROP vs. Gas ratio Power 1.91 0.212

o = o o
> = o o>
T T

Normalized_ROP
S
o

T T

Results

e | teral 3 (i ing section)

T
¢ Normalized_ROP vs. Normalized_GAS_ratio L

1 1 1 1

0.5

0.6 0.7 08

Normalized_GAS_ratio
Fig. 16 Graph and equation of second degree-polynomial model (increasing section) for lateral 3.

Linear model Poly2:
f(x) = p1*x*2 + p2*x + p3
Coefficients (with 95% confidence bounds):

pl= -0.2104 (-1.295,0.8741)
p2= 09264 (-0.09879, 1952)
p3= -0.08447 (-0.2987, 0.1298)

Goodness of fit:

SSE: 0.4952

R-square: 0.5536

Adjusted R-square: 05323

RMSE: 0.1086
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The best correlation equation for decreasing section of lateral
I:
f(x)=-1.778*x?+2.448*x-0.01732 @)

The best correlation equation for decreasing section of lateral
2:

f (x)=-0.6858*x+1.489*x+0.01946 ()
According to the MATLAB output, the equation of the best
fit for increasing section of lateral 1 is:
f(x)=-0.2104*x2+0.9264*x-0.08447 )

Application

Heterogeneity indicates the variation in the values of various
parameters of a reservoir, such as porosity and permeability,
at different points within it, which ultimately causes chang-
es in ROP and gas ratio. These three laterals were drilled at
different locations in the reservoir, and the variations in the
fitting results demonstrate the presence of heterogeneity in
the reservoir. This paper opens a new window for studying
the correlation between two or more drilling parameters for
reservoir identification. Using this method, it is possible to
better understand the geomechanical properties of the rock
and optimize drilling parameters, including RPM, ROP,

Journal of Petroleum Science and Technology 14(4): 44, 2024, Pages 28-36

WOB, etc. It further helps reduce expenses that result from
improper drilling.

Discussion

These laterals are located in a heterogeneous reservoir, and
the data used in this study are real. Therefore, the different
results for each lateral can be justified to some extent.
This study mainly deals with the existence or absence of a
correlation between ROP and gas ratio in the reservoir layer.
As long as this correlation is established in the reservoir, we
can drill in the appropriate direction without having to use
geosteering again. Using all geomechanical data of the rock
and well logging, which provide a better understanding of the
reservoir, is essential when applying these correlations. For
each reservoir, a specific correlation is established based on its
properties. Different correlations can be seen in reservoirs of
limestone, shale, and sandstone. Future work should explore
applying these models to other fields with similar geological
characteristics to validate their broader applicability (The
procedure is shown in a flowchart in Fig. 17). Additionally,
integrating more advanced machine learning algorithms may
further enhance the accuracy of the correlations and reduce
the need for manual intervention during the drilling process.

= el e[ o
Model-based
!
NomalizingData | e e ’ peatiig Kol Specifying the starting
layer isg * ‘:’mm,l:;“ = point for interpretation
|
Strat-based
Eliminating outliers 5 Plotﬁng::?:w.gn :;t::ﬁ::ﬂm 5 Finding:oed:st-ﬁned

Fig. 17 Procedure Flowchart

Conclusion

An important aspect of geosteering involves steering wells
in horizontal layers, usually achieved by correlating the
gamma-ray logs from a lateral with the logs from a vertical
reference well. Many technologies, such as machine learning
and automatic geosteering, have been developed in this field,;
however, they often incur significant costs due to the frequent
use of geosteering.

This study explored the correlation between ROP and
gas ratio data for three laterals drilled in a heterogeneous
limestone reservoir in Iran by plotting normalized ROP vs.
normalized gas ratio. By fitting various mathematical models
to the normalized data, we identified (for total data analysis)
the second-degree polynomial model as the most accurate for

laterals 1 and 2. In contrast, the power model provided the
best fit for lateral 3. The research revealed that the second-
degree polynomial model was the most accurate for the three
laterals based on data from various parts of MD graphs.
These correlations offer a valuable tool for optimizing future
drilling operations in the field, potentially reducing the need
for repeated geosteering and the associated costs.

Nomenclature

gasratio,: Normalized gas ratio
IGR : Interquartile Range

LWD: Logging While Drilling

MD: Measurement Depth, m
MWD: Measurement While Drilling
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R Fit Goodness

RMSE: Root Mean Squared Error

ROP: Rate Of Penetration, m/hr

ROP_ : Normalized Rate Of Penetration
Sar: Sarvak Layer

SSE: Sum Squared Error

TST: True Stratigraphic Thickness, m
TVD: True Vertical Depth, m

WOB: Weight On Bit, kib
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