
Abstract
Geosteering is an essential method employed in oil and gas drilling, particularly for horizontal wells, to precisely 
locate the wellbore within hydrocarbon-rich formations. To carry out this process, the gamma-ray logs from the 
laterals are matched with logs from a reference vertical well to position the lateral in the desired path accurately. Nu-
merous studies have been carried out in the field of geosteering, focusing on the application of machine learning and 
the creation of automated geosteering methods. Due to the high cost of repeated use of steering, it can be helpful to 
establish a logical mathematical correlation between two or more parameters for movement within the reservoir. This 
study investigates the relationship between Rate of Penetration (ROP) and gas ratio data in three laterals drilled in a 
heterogeneous limestone reservoir in Iran by plotting normalized ROP vs. normalized gas ratio. Geomaster software 
is used to direct the geosteering process in order to ascertain the reservoir’s depth. Once the ROP and gas ratio data 
have been normalized and outliers removed, different models such as linear, polynomial, power, and exponential 
are utilized in MATLAB. As a result, we can observe that for the majority of laterals, the second-degree polynomial 
model offers the best correlation. Also, the presence of heterogeneity affects some results of laterals. These results 
can be applied to reduce the expenses associated with recurrent geosteering operations, enable the drilling of new or 
extended laterals, and optimize drilling operations in the field.
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Introduction
The method of geosteering involves changing a 
directional or horizontal wellbore’s trajectory to optimize 
contact with a reservoir’s hydrocarbon-bearing zones. 
There are two main approaches to accomplish this: one 
model-based and the other strat-based (Fig. 1). 
This technique is crucial for optimizing production and 
reducing the cost of drilling operations. Instruments like 
Measurement While Drilling (MWD) and Logging While 
Drilling (LWD) offer real-time information, allowing for 
modifications to the well’s path according to the features 

of the reservoir.
ROP is the distance drilled per unit of time. Several 
factors influence it, such as mud weight, weight on bit, 
and the lithology of the formation [2]. ROP is used to 
evaluate the properties of the formation and ascertain the 
target depth. Another critical parameter in this paper is the 
gas ratio, which may deviate due to changes in lithology 
or drilling events in the well, such as introducing drilling 
fluid into the formation, changes in ROP, or variations 
in bit size. 

Fig. 1 Model-based and Strat-based procedure, [1].
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Higher ROP and gas ratio readings are the consequence of 
porosity and hydrocarbons in reservoir layers. The reservoir 
and its lithology can be somewhat identified using this 
relationship. For example, soft formations show high ROP, 
while shales exhibit a lower gas ratio [3,4].
In recent years, researchers have become interested in 
improving geosteering, including predicting a log (Fig. 2) 
based on offset wells and calculating the true stratigraphic 
thickness (TST) to the drilled point correlated with the 
LWD log through matching. This work has improved well 
placement in the reservoir by enhancing the accuracy of 
subsurface models and their dynamic updating [5].

Fig. 2 Well log prediction process, [5].

Creating an automatic geosteering algorithm using a 
stratigraphic misfit heatmap (Fig. 3) is an innovative 
approach in geosteering. This algorithm can effectively detect 
faults and calculate the probability of the well being placed 
in the desired path. Additionally, it can establish correlations 
[6]. Control points can be utilized to improve the accuracy 
of automated geosteering when it produces unreasonable 
interpretations [7]. Estimating geological boundaries using 
well-log data can lead to automatic steering [8].

Fig. 3 Lateral and reference well gamma-ray correlation in strati-
graphic misfit heatmap, [6].
By employing relevant models, a support system is utilized 
to enhance geological uncertainties [9] or making appropriate 
decisions regarding drilling operations [10]. The Bayesian 
Decision Network is another system used in geosteering that 
displays the errors of the instruments and geological events 
[11].
To achieve the goals of geosteering, the Stochastic Monte 
Carlo method [12] or Bayesian Network [13] can be used 
to solve inverse geosteering problems. Resistivity tools play 
an essential role in geosteering, leading to lateral guidance 
in complex reservoirs and providing subsurface information 

[14,15]. 
3D maps have made it possible to create a better view of 
reservoirs, wells, and geological layering features [16,17]. 
Drilling costs can be reduced by developing a 3D geosteering 
system that combines engineering and geology [18] and 
geological interpretation can be conducted using its features 
[19].
Logs between lateral and typewell were correlated using 
machine learning to build an autonomous geosteering model 
for better well siting in the target path. Finally, the advantages 
of this method include reducing human errors and increasing 
operational efficiency through automated steering [20]. Machine 
learning was also used to predict lithology by correlating drill 
string and bit data [21] or utilizing LWD data [22]. 
Although advances in machine learning and automation have 
significantly improved geosteering accuracy, the high costs 
associated with this process remain a challenge. For this 
reason, developing predictive models that correlate drilling 
parameters such as the ROP and gas ratio with reservoir 
characteristics can significantly reduce the need for repeated 
geosteering. Studying three well data in a reservoir and 
obtaining correlations with different accuracies can help us 
identify a heterogeneous reservoir and its geomechanical 
properties, including resistance and stresses on the rock, as 
well as identify faults, natural fractures, anticlines, etc.
The purpose of this investigation is to developing a correlation 
between ROP and gas ratio reservoir data from three laterals 
drilled in a heterogeneous limestone reservoir in Iran. The 
average WOB in drilling the reservoir layer for laterals 1, 
2, and 3 is 12, 9, and 12 kIb, respectively. The goal is to 
establish predictive models to guide future lateral drilling in 
the field without requiring costly geosteering processes. We 
used various mathematical models to assess the accuracy of 
these correlations and determine the most reliable method for 
optimizing drilling operations.

Methodology
Field Overview
The field under study is a heterogeneous limestone reservoir 
located in Iran. Three laterals were drilled and geosteered 
using Geomaster software to accurately position the 
wellbores within the hydrocarbon-bearing zones of the 
reservoir. During the drilling of these laterals, information on 
the ROP and gas ratio was gathered. 
To evaluate initially the reservoir and find the depth of 
the desired layer, first, we used ROP and gas ratio data in 
reference (vertical) well like in Fig. 4. In this Figure, we saw 
approximately that both charts at Measurement depth (MD) 
=2600 m to MD=2700 m (in vertical well, MD equals True 
Vertical Depth (TVD)) have increased. So, the reservoir layer 
may be placed at this depth; however, it should be geosteered 
for a more accurate assessment. 

Geosteering Process
The geosteering procedure for the three laterals was guided 
by Geomaster software. By analyzing gamma-ray logs, 
we accurately determined the exact depth and thickness of 
the reservoir. The gamma-ray logs from the laterals were 
matched with logs from a reference vertical well to improve 
the accuracy of the wellbore placement.
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Fig. 4 MD graphs in terms of ROP and gas ratio in reference well 
of lateral 1.
As seen in Fig.s 5, 6, and 7, this matching method enabled 
us to adjust the well trajectory in response to the real-time 
determination of reservoir boundaries. In all the laterals, 
according to their geosteering, the reservoir layer was located 
between Sar. 3 and Sar. 4-7, and the green area of this layer 
indicates the desired portion. Furthermore, in lateral 1, as 
analyzed in Fig. 4, the reservoir depth is approximately.

Data Normalization and Outlier Removal
Using real data and the presence of heterogeneity create outliers 
that must be removed. Equation 1 was used to normalize the 
data between 0 and 1. This normalization eliminated the effects 
of scale differences between the two datasets. 
The first and third quartile methods were then applied to 
eliminate outliers. This method involved calculating the 
interquartile range (IQR) and removing data points that 
fell outside 1.5 times the IQR above the third quartile or 
below the first quartile (The reservoir data obtained through 
geosteering has been utilized in this project.).

Fig. 5 Geosteering of lateral 1.

Fig. 6 Geosteering of lateral 2.

Fig. 7 Geosteering of lateral 3.
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The upper and lower limits of the gas ratio and ROP are 
shown in Table 1:
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Table 1 Removing outlier data using the first and third quartile method in Excel-lateral 1

ROP  [m/hr]Gas ratio  [-] Command in ExcelParameter

0.150.2249QUARTILE.EXC( : ,1) ( First Quarter Command)First Quarter

0.3990.3455QUARTILE.EXC( : ,3) ( Third Quarter Command)Third Quarter

0.2490.1206Third Quarter-First Quarter50%

0.7720.5265Third Quarter+(1.5*50%)Upper limit

0.0439First Quarter-(1.5*50%)Lower limit

Only data larger than the upper limit were eliminated as out-
liers because the ROP lower limit is negative. Finally, as an 
example, a portion of the calculations related to normalizing 

data and removing outliers for lateral 1 is shown in Table 2 
(Red data are outliers):

Table 2 A portion of the information and calculations of lateral 1
MD [m] Gas ratio [-] ROP [m/hr] Normalized Gas ratio Normalized ROP

3080 0.633 10.86 0.012171534 0.33272925

3081 3.297 13 0.075010615 0.410293585

3082 6.324 15.39 0.146412228 0.496919174

3083 9.728 12.62 0.226706609 0.396520478

3084 15.041 12.64 0.352030948 0.397245379

3085 20.039 11.97 0.469924989 0.372961218

3086 24.079 9.49 0.565221494 0.283073577

3087 24.201 8.97 0.568099259 0.264226169

3088 11.491 5.87 0.268292683 0.151866618

3089 6.474 15.76 0.149950465 0.51032983

3090 7.619 20.35 0.176959004 0.676694455

3091 7.591 28.47 0.176298533 0.971003987

3092 7.38 25.51 0.171321413 0.863718739

3093 9.784 27.54 0.228027551 0.937296122
* A negative value indicates no lower limit.

Model Fitting and Analysis
Following the normalization and outlier removal, several 
models, such as linear, second-degree polynomial, power, 
and exponential, were applied to the data using MATLAB. 
The models were evaluated based on their R² value (which 
measures the fit goodness) and the sum squared error (SSE). 
In addition, the model that best suited the data was determined 
to have the highest R² value and the lowest SSE. This process 
was repeated for each of the three laterals to determine the 
most accurate model for each case. 
For a more accurate and better analysis of the data, we used 
the graphs of MD in terms of gas ratio and ROP. We then 
proceeded to analyze the trends observed in these graphs for 
each lateral, as illustrated in Fig. 8 to Fig. 10 (The trends 
indicated in these figures should be observed and verified 
for each lateral in both MD vs. Gas ratio and MD vs. ROP 
graphs). 
For better interpretation, the average data was calculated 
and plotted every 10 meters (The unclear parts in the graphs 

have been removed as they are outside the production zone 
according to their geosteering). Other methods, such as 
smoothing techniques, will also show the same trends.

Results
First, we plotted the normalized ROP vs. normalized gas 
ratio. Subsequently, different models were examined to 
determine the most suitable match for each lateral data set.  
For lateral 1, the second-degree polynomial model offered 
the most accurate correlation between ROP and gas ratio, 
with an R² value of 0.095 and an SSE of 12.77 (Table 3 and 
Fig. 11). In lateral 2, the second-degree polynomial model 
again provided the best fit, with an R² value of 0.344 and 
an SSE of 5.76 (Table 4 and Fig. 12). However, in lateral 
3, the power model proved to be the most accurate, with an 
R² value of 0.207 and an SSE of 4.34 (Table 5 and Fig. 13). 
As it is clear from the results, the lateral 2 correlations have 
higher accuracy than the other two laterals (All equations are 
dimensionless).
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Fig. 8 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 1.

Fig. 9 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 2.

Fig. 10 Graphs of measurement depth (MD) in terms of ROP and Gas ratio for lateral 3.

Table 3 Accuracy and error of correlations - lateral 1.

Fit name Data Best fit type SSE R2

Lateral 1 (total data) ROP vs. Gas ratio Linear 13.01 0.078

Lateral 1 (total data) ROP vs. Gas ratio
Second degree-polynomi-
al

12.77 0.095

Lateral 1 (total data) ROP vs. Gas ratio Power 12.79 0.094

Lateral 1 (total data) ROP vs. Gas ratio Exponential 12.9 0.086

Fig. 11 Graph and equation of second degree-polynomial model for lateral 1.
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Table 4 Accuracy and error of correlations - lateral 2.

Fit name Data Best fit type SSE R2

Lateral 2 (total data) ROP vs. Gas ratio Linear 5.79 0.341

Lateral 2 (total data) ROP vs. Gas ratio Second degree-polynomial 5.76 0.344

Lateral 2 (total data) ROP vs. Gas ratio Power 5.77 0.343

Lateral 2 (total data) ROP vs. Gas ratio Exponential 6.01 0.316

Fig. 12 Graph and equation of second degree-polynomial model for lateral 2.

Table 5 Accuracy and error of correlations - lateral 3.

Fit name Data Best fit type SSE R2

Lateral 3 (total data) ROP vs. Gas ratio Linear 4.45 0.187

Lateral 3 (total data) ROP vs. Gas ratio Second degree-polynomial 4.36 0.204

Lateral 3 (total data) ROP vs. Gas ratio Power 4.34 0.207

Lateral 3 (total data) ROP vs. Gas ratio Exponential 4.39 0.197

Fig. 13 Graph and equation of power model for lateral 3.

According to the MATLAB output, the equation of the best 
fit for lateral 1 is:

2( ) 1.79* 0.5057* 0.2589"f x x x= - +                    (4)

The best correlation equation for lateral 2 is:
2( ) 0.6804* 0.9945* 0 01784" .f x x x=- + +                                    (5)

The best correlation equation of lateral 3 is:
1.66( ) 0.3205* 0.1061"f x x= +                                       (6)

Because the correlations from the analysis of the total data 
were not sufficiently accurate, we analyzed the data based on 
different sections of MD graphs (according to Fig. 7 to Fig. 9), 
including the increasing, constant, and decreasing sections. 

For example, when we examine the increasing section, it 
indicates that in one part of the layer, both ROP and gas ratio 
parameters are increasing. It is likely that we have entered 
the reservoir layer because the drilling rate in the producing 
layer has increased due to the presence of porosity and fluid. 
Furthermore, the existence of hydrocarbons enhances the 
measured gas ratio. The analysis showed that the decreasing 
sections provided more accurate correlations for laterals 1 
(Table 6 and Fig. 14) and 2 (Table 7 and Fig. 15), while the 
increasing section offered better accuracy for lateral 3 (Table 
8 and Fig. 16). In addition, this variation is likely due to 
the heterogeneous nature of the reservoir, which introduces 
variability in the correlation between ROP and gas ratio.
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Table 6 Accuracy and error of best correlations for increasing, constant, and decreasing sections - lateral 1.

 Fit name Data  Best fit type SSE R2

Lateral 1 (increasing section) ROP vs. Gas ratio  Second degree-polynomial 3.566 0.0153

Lateral 1 (constant section) ROP vs. Gas ratio Power 1.515 0.015

Lateral 1 (decreasing section) ROP vs. Gas ratio Second degree-polynomial 0.821 0.582

Fig. 14 Graph and equation of second degree-polynomial model (decreasing section) for lateral 1.

Table 7 Accuracy and error of best correlations for increasing, constant, and decreasing sections - lateral 2.

 Fit name Data  Best fit type SSE R2

Lateral 2 (increasing section) ROP vs. Gas ratio Power 0.961 0.46

Lateral 2 (constant section) ROP vs. Gas ratio Power 1.353 0.08

Lateral 2 (decreasing section) ROP vs. Gas ratio Second degree-polynomial 0.389 0.657

Fig. 15 Graph and equation of second degree-polynomial model (decreasing section) for lateral 2.

Table 8 Accuracy and error of best correlations for increasing, constant, and decreasing sections of lateral 3.

Fit name Data  Best fit type SSE

Lateral 3 (increasing section) ROP vs. Gas ratio Second degree-polynomial 0.495 0.554

Lateral 3 (constant section) ROP vs. Gas ratio Second degree-polynomial 2.14 0.235

Lateral 3 (decreasing section) ROP vs. Gas ratio Power 1.91 0.212

Fig. 16 Graph and equation of second degree-polynomial model (increasing section) for lateral 3.
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The best correlation equation for decreasing section of lateral 
1:
f(x)=-1.778*x2+2.448*x-0.01732                                       (7)

The best correlation equation for decreasing section of lateral 
2:
f (x)=-0.6858*x2+1.489*x+0.01946                                       (8)
According to the MATLAB output, the equation of the best 
fit for increasing section of lateral 1 is:
f (x)=-0.2104*x2+0.9264*x-0.08447                                       (9)

Application 
Heterogeneity indicates the variation in the values of various 
parameters of a reservoir, such as porosity and permeability, 
at different points within it, which ultimately causes chang-
es in ROP and gas ratio. These three laterals were drilled at 
different locations in the reservoir, and the variations in the 
fitting results demonstrate the presence of heterogeneity in 
the reservoir. This paper opens a new window for studying 
the correlation between two or more drilling parameters for 
reservoir identification. Using this method, it is possible to 
better understand the geomechanical properties of the rock 
and optimize drilling parameters, including RPM, ROP, 

WOB, etc. It further helps reduce expenses that result from 
improper drilling.

Discussion 
These laterals are located in a heterogeneous reservoir, and 
the data used in this study are real. Therefore, the different 
results for each lateral can be justified to some extent. 
This study mainly deals with the existence or absence of a 
correlation between ROP and gas ratio in the reservoir layer. 
As long as this correlation is established in the reservoir, we 
can drill in the appropriate direction without having to use 
geosteering again. Using all geomechanical data of the rock 
and well logging, which provide a better understanding of the 
reservoir, is essential when applying these correlations. For 
each reservoir, a specific correlation is established based on its 
properties. Different correlations can be seen in reservoirs of 
limestone, shale, and sandstone. Future work should explore 
applying these models to other fields with similar geological 
characteristics to validate their broader applicability (The 
procedure is shown in a flowchart in Fig. 17). Additionally, 
integrating more advanced machine learning algorithms may 
further enhance the accuracy of the correlations and reduce 
the need for manual intervention during the drilling process.

Fig. 17 Procedure Flowchart

Conclusion 
An important aspect of geosteering involves steering wells 
in horizontal layers, usually achieved by correlating the 
gamma-ray logs from a lateral with the logs from a vertical 
reference well. Many technologies, such as machine learning 
and automatic geosteering, have been developed in this field; 
however, they often incur significant costs due to the frequent 
use of geosteering.
This study explored the correlation between ROP and 
gas ratio data for three laterals drilled in a heterogeneous 
limestone reservoir in Iran by plotting normalized ROP vs. 
normalized gas ratio. By fitting various mathematical models 
to the normalized data, we identified (for total data analysis) 
the second-degree polynomial model as the most accurate for 

laterals 1 and 2. In contrast, the power model provided the 
best fit for lateral 3. The research revealed that the second-
degree polynomial model was the most accurate for the three 
laterals based on data from various parts of MD graphs. 
These correlations offer a valuable tool for optimizing future 
drilling operations in the field, potentially reducing the need 
for repeated geosteering and the associated costs. 

Nomenclature
gas rationorm: Normalized gas ratio
IGR : Interquartile Range
LWD: Logging While Drilling
MD: Measurement Depth, m
MWD: Measurement While Drilling
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R2: Fit Goodness
RMSE: Root Mean Squared Error
ROP: Rate Of Penetration, m/hr
ROPnorm: Normalized Rate Of Penetration
Sar: Sarvak Layer
SSE: Sum Squared Error
TST: True Stratigraphic Thickness, m
TVD: True Vertical Depth, m
WOB: Weight On Bit, kIb
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