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Abstract
Equations of state should be tuned to reservoir conditions by PVT tests for phase behavior modeling. 
This tuning is achievable via an optimization method. In this work, simulated annealing algorithm is 
applied as a global optimization method to parameter optimization for PC-SAFT from the statistical 
associating fluid theory incorporating hard chain as reference fluid. The optimization parameters 
are determined by minimizing the calculated phase behavior of a synthetic petroleum mixture and 
real petroleum fluids from Iranian oil and gas reservoirs, based on their PVT­tests. We examined 
several tests, assumed to be representative of reservoir processes, such as differential liberation and 
constant composition expansion for oil samples and constant volume depletion for gas condensate 
sample. In petroleum systems, new petroleum fraction characterizing correlations were developed 
and validated according to PVT data and other equations of state. The results showed a high degree 
of accuracy for these newly developed correlations. It is observed that for the synthetic mixture 
and real reservoir fluids, considering the parameters obtained using the annealing technique, the                            
solutions are theoretically justifiable. For real samples of petroleum fluid, the results are acceptables 
such results provide a measure of confidence that the annealing method does converge to the global 
minimum in the majority of the studied systems. 
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Introduction
Reservoir fluid phase behavior modeling and tuning to 
reservoir condition play an important role in reservoir 
study. Cubic equations of state have traditionally been 
used to model phase behavior in the oil industry because 
they provide good results and are mathematically simple. 
The SRK (Soave-Redlich-Kwong) and the PR (Peng-
Robinson) equations are the most popular cubic equations 
currently used in research, simulations, and optimizations 
in which thermodynamic and VLE properties are required. 
These two equations have been considered for all types 
of calculations from simple estimations of pure­fluid                                                                                                          
volumetric properties and vapor pressures to descrip-
tions of complex multi-component systems [1-3]. Soave-
Redlich-Kwong achieved several goals in developing a 
new two-parameter equation of state cubic in volume. 
The parameters are expressible in terms of critical pres-

sure, critical temperature and Acentric factor (PC , TC and 
ω). The model results in an improved performance in the 
vicinity of the critical point, particularly for calculations 
of ZC and vapor pressure. SRK is able to predict the vapor 
pressure more accurately than other equations of state.
     With the advent of molecular simulation coupled with 
statistical physics, new approaches have been investi-
gated for equations of state [4]. Statistical Associating 
Fluid Theory is a statistical mechanical equation of state                  
developed from Wertheim’s first­order perturbation theory 
[5]. It is similar to group contribution theories in that the 
fluid of interest is initially considered to be a mixture of 
independent segments. The theory, proposed by Chap-
man, predicts the change in free energy both upon bonding                                                                                                       
these segments to form chains and on the further asso-
ciation of the chain-like molecules [6,7]. In this work, 
PC-SAFT equations of state from SAFT family is used                                                                                                                                             

mailto:pishvaie@sharif.edu


4 Assareh et al Journal of Petroleum Science and Technology

to describe phase behavior of petroleum fractions [8].
    Any equation of state ultimately relies on a number 
of intermolecular parameters (binary interaction param-
eter), which must be obtained by direct comparison with 
experimental data [9-11]. In the case of petroleum reser-
voir fluids, there are other sources of uncertainties such 
as petroleum fraction characterization and conditions 
in which reservoir fluids exists. The optimum values of 
these parameters are obtained by fitting the calculations 
to available experimental data using a suitable parameter 
optimization method. An advantage of modern equations 
over cubic equations of state is that fewer experimental 
data points may be needed to obtain a full description 
of the phase behavior of a system, especially in the case 
of mixtures. Traditionally, gradient based optimiza-
tion methods are used to tune equations of sates, which 
may lead to unsatisfied results. Stochastic optimization                  
refers to an optimization process of a function in which                                                                                                      
randomness is present [12]. Examples of various stochastic 
optimization methods are greedy search, stochastic pro-
gramming, and genetic algorithm and simulated anneal-
ing. A general optimization process involves a series of 
trials and errors [13]. The function to be optimized is 
termed objective function. In a typical modeling task, 
where the aim is to produce a realization that matches a 
target, their differences define the objective function to 
be minimized. Starting from an initial guess, a number 
of realizations are generated, each of which corresponds 
to a new objective function value. The generation is re-
peated until the minimum value of objective function is 
established. The generation procedure is essential for an 
optimization since it determines speed of the optimiza-
tion process and whether or not the objective function 
can be optimized. 
     One of the simplest forms of stochastic optimization 
methods is greedy algorithm or exhaustive search. As 
the name suggests, iterations are carried out in a very 
random manner. For each of iterations, a new realization 
is computed from previous one. If there is a decrease 
in values of the objective functions, the new realization                                
becomes the base for next iterations. However, this is 
very time consuming and has the risk of trapping in                            
local minimums. In global optimization methods such as 

simulated annealing, if objective function is decreased, 
the set of optimization parameters is kept uncondition-
ally, otherwise a probability function is assigned to it. 
This decreases the chance of trapping in local minimum 
with lower amounts of iterations [12].
  In this work, a global optimization algorithm is                      
applied for tuning of equation of state for petroleum res-
ervoir fluid phase behavior modeling. The optimization 
parameters are determined by minimizing the calculated 
phase behavior of a synthetic petroleum mixture and real                       
petroleum fluids from Iranian oil and gas reservoirs, based 
on their PVT-tests. We carried out several tests, assumed 
to be representative of reservoir processes, such as dif-
ferential liberation and constant composition expansion 
for oil samples and constant volume depletion for gas                                                                                                             
condensate sample. In petroleum systems, new petroleum 
fraction characterizing correlations were developed and 
validated according to PVT data and other equations of 
state. The results of simulated annealing were compared 
with the experimental data. Finally, a brief discussion of 
the method and the results are presented.

Equation of State Model
Traditionally, a cubic equation of state is used for 
phase behavior modeling of petroleum fluids. The SRK 
(Soave-Redlich-Kwong) and the PR (Peng-Robinson) 
equations are the most popular cubic equations currently 
used in research, simulations, and optimizations in which                                                                                                         
thermodynamic and VLE properties are required. These 
two equations have been considered for all types of cal-
culations from simple estimations of pure­fluid volu­
metric properties and vapor pressures to descriptions 
of complex multi-component systems [1-3]. Statistical                            
Associating Fluid Theory is a statistical mechanical 
equation of state developed from Wertheim’s first­order 
perturbation theory [5]. In this work, PC-SAFT equa-
tions of state from SAFT family is used to describe 
phase behavior of petroleum fractions [8]. This equation 
of state is developed by Gross and Sadowski for non-
associating fluids [8]. It assumes a modified square­well 
potential. PC-SAFT describes the residual Helmholtz 
free energy (Ares) of a mixture of non­associating fluids 
as shown in Figure 1. 

Figure 1- Modified Square­Well Interaction Potential Used in PC­SAFT Equation of State
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It describes the residual Helmholtz free energy (Ares) 
of a mixture of non­associating fluids, which is shown                
schematically in Figure 2.

 (1) 

Where

                      (2)

In which radial distribution function is:

(3)

And packing fraction density is:

                  (4)
Temperature dependent diameter:

                           (5)
The dispersion contribution to Helmholtz free energy 
is:

                                              (6)

In that:  

   (7)

And:

                
(8)

                                                      

The summation for compressibility of hard chain is:

                     (9)
                                   

   And in the extension to the mixture we have the                
following relations:

                                                     (10)

And:
                                      (11)

    In the above equations, ρ is the density number, η is 
the packing fraction (same as ζ3), σ is the temperature 
independent segment diameter, dij is the temperature    
dependent segment diameter, εi/k is the segment energy, 
xi is the mole fraction of species i, and kij is the binary 

Figure 2- The free energy is the sum of the independent segment free energy and the change in free energy due to chain formation and association

interaction parameter between species i and j. I1 and I1 
are functions of the system packing fraction and average 
segment number and can be found in the work by Gross 
and Sadowski [8]. The SAFT  association term is not used 
in this work because of our assumption that there is no 
association in reservoir fluids. SAFT has been success­
fully used to predict the phase behavior of fluids where 
molecular size and shape interactions dominate. As seen 
in the above equations, SAFT requires three parameters 
for each pure component: the number of segments per 
molecule (m), the molecular segment diameter (σ), and 
the segment energy (ε/k). An important feature of SAFT 
is that the correlations of pure component parameters 
with molecular weight can be made for hydrocarbon and                                                                                   
polynuclear aromatics. As a result, appropriate correla-
tions are needed to characterize petroleum fraction and 
heavy oil plus fraction. SAFT has been successfully used 
to predict the phase behavior of fluids where molecular 
size and shape interactions dominate. For instance, it ac-
curately describes the phase behavior of high molecular 
weight and the vapor liquid equilibrium of long-chain, 
short-chain hydrocarbon mixtures.

Phase Behavior Analysis
In this work, the SRK and PC-SAFT equation of state were 
used for phase behavior calculations such as computing 
saturation pressure and simulation of PVT test such as 
DL (differential simulation), CCE (constant composition                     
expansion) and CVD (constant volume depletion).                                                                                                    
For PVT test, we need flash calculation algorithm. The 
successive substitution approach was used [9,10]. To 
plot PT diagram, we require saturation pressure, which 
can be calculated by Gibbs free energy analysis. Using 
Gibbs free energy analysis, phase stability analysis can 
be formulated by calculating the distance between Gibbs 
free energy surface and the tangent plane, called the                                                                                                                      
tangent plane distance (TPD). Stability analysis is to locate 
the minimum of the TPD at all compositions. It is further                                                                                                    
suggested that checking the positivity at stationary points 
is sufficient [14­16]. Here, equations for calculating 
the saturation pressure of a homogeneous phase were                 
developed using the tangent plane criterion for stability. 
At a given pressure P and temperature T, a mixture of 
composition Z is stable if and only if the tangent plane to 
the Gibbs free energy surface at Z always lies below the 
Gibbs free energy surface. This can be mathematically                                                                                                                                   
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expressed as follows:
          (12)

     For all y, the function DZ (y,P,T) is the distance from 
the Gibbs free energy surface to the tangent plane at Z, 
evaluated at a composition y and the given pressure P 
and temperature T, and fi is the fugacity of component i. 
It is also more convenient to work with the dimension-
less distance DZ

* defined as follows
                         (13)

     As proposed by (Michelsen M., 1982), to test the 
stability of mixture Z, it is sufficient to check the values 
of DZ

* at all the minimum points y of DZ
*. The stationary 

points y of DZ
* satisfy the following equation

(14)

    Where denotes the fugacity coefficient of compo­
nent I calculated using PC-SAFT EOS [4]. Composition 
y is found from the equations:

                                        (15)
And

                            (16)

At a stationary point, when gi=0  as required by equation 
(19).                                                                                                                                       

                               (17)

Since DZ
* must be positive for the mixture Z to be stable, 

it is necessary that the
                                                           (18)

     When two phases are in equilibrium, the plane drawn 
tangent to the Gibbs free energy surface at one of the 
compositions is also a tangent to the Gibbs free energy 
at the second composition. If the first composition is Z 
and the second y, intersection of the tangent plane at Z 

with the Gibbs free energy at y requires that the distance 
be zero; i.e.

                                                 (19)

Combining eqns. (17) and (19) results in the following 
equation

                                                            (20)
Obviously, all sets of equations are strongly nonlinear 
and are required to be iteratively solved using iterative 
methods such as Newton-Raphson. 

Simulated annealing
Kirkpatrick introduced simulated annealing to complex                                                                                                  
problems in combinatorial optimization [12]. Since then, 
this has been used in a variety of problems that involve 
finding optimum values of a function of a very large 
number of independent variables. The basic concept of 
simulated annealing originates from physical process of 
metallurgical annealing. An annealing process occurs                      
when a metal in a heat bath is initially at high tem-
perature and is slowly cooled. At first, all particles are               
randomly distributed in a quasi-liquid state. As tempera-
ture drops, particles arrange themselves in a lowenergy 
ground state (i.e. at or very close to the global minimum 
of energy), forming crystals. If the cooling process is 
too rapid, equilibrium conditions are not always main-
tained. Crystals are not formed and the total energy of 
the system is not at minimum in this case. Crystallizing 
can be viewd as a combinatorial optimization problem 
to arrange the atoms in a material to minimize the total 
potential energy. Crystallizing is often performed with 
a cooling procedure called annealing. The theoretical 
modeling of this process applicable to arbitrary combi-
natorial spaces is called simulated annealing. The flow                                                                                                            
diagram of simulated annealing used in this work is 
shown in Figure 3. 

Figure 3- Flow Diagram of Simulated Annealing Applying Metropolis algorithm
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Herault noticed that SA took a long time to find an                 
optimal solution [17]. To remedy this, he created an                  
algorithm called rescaled simulated annealing (RSA). 
The only thing that Herault changed about SA is the Me-
tropolis Criterion. In this flow diagram, the Metropolis                                                                                                         
algorithm is applied to help program to be transformed 
out of local minimum applying random number gen-
eration process [18]. If energy (objective function) is 
decreased, the set of optimization parameters is kept 
unconditionally. Otherwise, a Boltzman probability 
function is assigned to it as in equation 21.

                                                                                    
(21)

     Then, a random number is generated within metropo-
lis algorithm. If the probability of the set of parameters 
is greater than random number, it will be accepted as 
the next iteration. The following linear schedule is                    
simple and yet effective, where α is a reduction factor or 
learning rate parameter:
Tnew=αTold                                                                    (22)
     It has been proved that by carefully controlling the 
rate of cooling of the temperature, SA can find the global                     
optimum. However, this requires infinite time. Fast                            
annealing and very fast simulated re-annealing (VFSR) 
or adaptive simulated annealing (ASA) are each in turn 
exponentially faster and overcome this problem. 
       The SA algorithm does not require or deduce derivative 
information. It merely needs to be supplied with an ob-
jective function for each trial solution it generates. Thus, 
the evaluation of the problem functions is essentially a 
“black box” operation as far as the optimization algo­
rithm is concerned. Obviously, in the interests of overall 
computational efficiency, it is important that the problem 
function evaluations be efficiently performed; especially 
as in many applications, these function evaluations are 
by far the most computationally intensive activity. Some 
thought needs to be given to the handling of constraints 
when using the SA algorithm. In many cases, the routine                                                                                                             
can simply be programmed to reject any proposed chang-
es, which result in constraint violation, so that a search 
of feasible space only is executed. This is the case for 
negative interaction coefficients. It is also valid about 
plus fraction properties. Phase behavior of petroleum 
fluid is strongly dependent on these properties and large 
changes in these variables may cause the SA to fail.

Results and discussion 
A number of different methods for optimizing (tuning) 
EOS have been developed, which rely on using infor-
mation about the gradient of the function to guide the 
direction of search. These methods can perform well 
on functions with only one peak (uni-modal functions). 
However, functions with many peaks, (multimodal func-
tions), suffer from the problem that the first peak found 
will climb, to form the highest peak. Having reached the 
top of a local maximum, no further progress can be made. 
This is the main disadvantages of classical methods                                                                                                             
for non-linear optimization of PVT tests. Using gra-

dient based algorithms, we may have good results for 
some properties in PVT test, while other properties have                                                                                           
considerable deviations from experimental data. There-
fore, global optimization approaches such as simulated 
annealing (SA) are good choices for EOS tuning. In 
this section, simulated annealing technique is applied 
to PC-SAFT equations and compared to non-optimized 
EOS. Experimental PVT data are obtained from a                                             
reliable resource by Iranian oil and gas reservoirs. The 
data include several tests such as constant composition 
expansion (CCE) and differential liberation (DL). Two 
types of objective functions have been constructed. The 
first one was according to minimization of difference 
between compositions obtained by equations of sate 
and those experimentally obtained via flash test. In the 
second, the objective was to minimize the difference                                                                           
between equation of states model and PVT tests. Several 
sets of parameters were selected.

Petroleum Fraction Characterization
Pure component parameters for PC-SAFT equation of 
state can be found in Table 1. An important feature of 
SAFT is that correlations of pure component parame-
ters with molecular weight can be made for n-alkanes 
and polynuclear aromatics. As a result, appropriate cor-
relations are needed to characterize petroleum fraction 
and heavy oil plus fraction. In fact, the main advantage 
of SAFT based equations is that the SAFT parameters 
are well-behaved and suggest predictable trends with                                    
macroscopic properties. Based on this fact, Huang and 
Radosz proposed correlations of SAFT parameters 
in terms of the average molecular weight for poorly                                                                              
characterized oil fractions [7]. 

Table 1- Pure  Component Parameter for PC-SAFT Equation of Sate [6]

Component
Molecular 

Weight
Diameter

[ 
o

A]
Energy 

Parameter
Nitrogen 28.01 1.205 3.313
Carbon 
dioxide 44.01 2.073 2.785

Methane 16.043 1 3.704
Ethane 30.07 1.607 3.521
Propane 44.096 2.002 3.618
n-Butane 58.123 2.332 3.709
n-Pentane 72.146 2.69 3.773
n-Hexane 86.177 3.058 3.798
n-Nonane 128.25 4.208 3.845
n-Decane 142.285 4.663 3.839

n-Dodecane 170.338 5.306 3.896
n-Tetradecane 198.392 5.9 3.94

n-Eicosane 282.553 7.9849 3.987
Isobutane 58.123 2.2616 3.757
Isopentane 72.146 2.562 3.83

Cyclopentane 70.13 2.365 3.711
Benzene 78.114 2.465 3.648
Toluene 92.141 2.815 3.717
Ethylene 28.05 1.593 3.445

Propylene 42.081 1.96 3.536
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The correlations are given in terms of the different                 
families, e.g., n-alkanes, polynuclear aromatics, etc. 
These correlations give poor results. Also, it is not clear 
exactly what proportion of each fraction belongs to                                                                                                    
specific family of hydrocarbons. For example for                        
n-alkanes, Gross and Sadowski proposed correlations in 
terms of molecular weight [8]. 
  These relations are not enough to characterize                           
petroleum fractions, which include several types of hy-
drocarbon families. A simple solution to this problem 
is to completely define the composition of fractions 
and then relate their PC-SAFT parameter to molecular 
weight for each family. The method used in this work, 
is plotting PC-SAFT parameters for different types of                
hydrocarbon and trying to find universal curves by                                                                                                
scaling figures of different families into a unit curve                    
introducing normal boiling point into x axis. These 
curves are shown in Figures 4, 5 and 6. The following 
relations are therefore obtained from figures in terms of 
molecular weight and normal boiling point.
m=0.0838MW((237°K)/(Tb°K))­2.6552                    (23)                                                                                                        
mσ3=5.7712MW((237°K)/(Tb°K))­229.92                 (24)                                                  
m(ε/k)=21.686MW((237°K)/(Tb°K))­702.57             (25)

Figure 4- Universal Curve for Segment Number Verses Molecular 
Weight Normalized with Normal Boiling Point for n-Alkanes, Alk-

enes and Benzenes.

Figure 6-  Universal Curve for Energy Term (m ε/k) Verses Molecu-
lar Weight Normalized with Normal Boiling Point for n-Alkanes, 

Alkenes and Benzenes.

Optimization using equilibrium condition
The first task in this research was to create a framework 
for lumping for PVT analysis. This framework facilitates 
program development by maximizing the code reuse,                                                                                       
extendibility, and maintainability. All algorithms are 
coded by C#. Several subroutines were written for File 
I/O, PVT analysis and optimization. The first sample is a 
synthetic hydrocarbon mixture from [11]. For PC-SAFT 
equation, sample A, all binary interaction parameters 
were selected with following objective functions:

                                    (26)

    The algorithm stops when the objective function does 
not change after a certain number of iterations (conver-
gence attained). It also stops if total number of itera-
tions exceeds a predefined limit (cannot reach optimum 
value). As it can be observed, allowing higher iteration 
makes the objective function to be more finally stable. 
Change in the value of binary interaction parameter is 
as follows:

As it can be seen from binary interaction coefficient                                                                                                                                     
matrix, the quality of optimization was so appropriate 
that physical meanings of the parameter observed (those 
with higher molecular weight difference), have higher 
values. The composition of each phase from experiment, 
using all of these sets of binary interaction parameters is 
presented in Table 2.

Molecular Weight *(273/Tb)

Molecular Weight *(273/Tb)

Figure 5- Universal Curve for Segment Diameter Term (mσ3) Verses 
Molecular Weight Normalized with Normal Boiling Point for n-

Alkanes, Alkenes and Benzenes.

Molecular Weight *(273/Tb)

Table 2- Liquid phase composition with optimization method and no 
optimization in comparison with experiment-Sample A- PC-SAFT 

equation

 PC-SAFT
 –simulated
annealing

 PC­SAFT –
 zero interaction
coefficients

Experiment Components

0.242 0.2742 0.242 C1
0.1518 0.1469 0.152 n-C4
0.6062 0.5789 0.606 n-C10
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PC-SAFT equation of state, can also be optimized in 
the same way, applying binary interaction coefficient. It 
can be observed from Table 2 that when there are no 
uncertainties in the PC-SAFT component parameters, 
the main source errors are handled by binary interaction 
parameters, which make it clear that the equation itself, 
according to stronger theoretical basis, has less devia-
tion from experimental data. Simulated annealing can 
deal with highly nonlinear models, chaotic and noisy 
data and many constraints. 
     It is a robust and general technique. Its main advan-
tages over other local search methods are its flexibility 
and ability to approach global optimality. The algorithm 
is quite versatile since it does not rely on any restrictive 
properties of the model. SA methods are easily “tuned”. 
For any reasonably difficult nonlinear or stochastic                                                    
system, a given optimization algorithm can be tuned 
to enhance its performance and since it takes time and                   
effort to become familiar with a given code, the abil-
ity to tune a given algorithm for use in more than one 
problem should be considered an important feature of 
an algorithm.

Optimization using PVT-Tests
There are several uncertainties associated with fluid 
phase behavior in reservoir conditions. These unknown 
uncertainties can be reduced when an equation of state is 
tuned to PVT-tests, which simulate reservoir, well-bore 
and surface facilities. In this case, some physical proper-
ties of three real petroleum reservoir fluids, samples B, 
C and D are shown in Tables 3 and 4. For sample B, a 
black oil mixture, differential liberation test is considered 
for optimization. This process simulates the volumetric 
depletion of a reservoir when the differential pressure 
steps become small. DL consists of a series of flashes 
at decreasing pressures along an isotherm. At each pres-
sure step, the gas phase is withdrawn and a new flash is 
carried out at a lower pressure with the remaining liquid 
phase. After the system has been equilibrated, the gas 
phase is removed from the cell at constant pressure. The 
gas volume is measured with a gas-meter and recorded.  
Once the last pressure has been reached, the cell tem-
perature is reduced to 15 oC and the cell pressure to 1 
atm. Two important outputs of this test are GOR (gas 
oil ratio) and oil specific gravity SG in each pressure 
step. Here, GOR is obtained as the ratio of volume of 
remaining gas in solution (measured at standard condi-
tions) to the volume of oil plus dissolved gas (measured 
at a given pressure). PC-SAFT is considered and opti-
mized against experimental data. Several parameters can 
be selected for non-linear optimization of this test for 
PCSAFT including binary interaction coefficients and 
critical properties of lumped plus fractions. Therefore, 
the following objective function can be written:

                   (27)

                                    

In which kij, mC12+, σC12+ and ε/kC12+ are used as optimiza-
tion parameters. The objective functions for 50 and 200 
iterations are represented in Figures 7 and 8. 
    The comparison of our optimization scheme with 
extended analysis in simulating DL test on sample B is 
shown in Figures 9 and 10. As it can be seen from the 
figures, the optimized (tuned figure) is much closer to 
the experimental data and nearly matches experimental 
data for gas oil ratio and oil formation volume factor. 
It should be noted that simulated annealing transformed 
optimization out of local optimums. As seen from                                                                                                  
equation 27, kij, mC12+, σC12+ and ε/kC12+ are selected as 
optimization parameters and gas oil ratio, oil formation        
volume factor and specific gravity are the candidate 
properties for tuning. 
    The same objective function was used for sample C, 
a heavy oil mixture. Since SA is meta-heuristic, a lot of 
choices are required to turn it into an actual algorithm. 
There is a clear tradeoff between the quality of the                                                                                                        
solutions and the time required to compute them. The 
tailoring work required to account for different classes 
of constraints and to fine­tune the parameters of the                    
algorithm can be rather delicate. The precision of the 
numbers used in implementation of SA can have a                                                                                
significant effect upon the quality of the outcome. The 
results obtained for PC-SAFT are presented in Figures 
11 and 12.

Table 3- Reservoir fluids composition

 Components Mole fraction
 B-Black oil

Mole fraction
C-Heavy oil

Mole fraction
D-Gas 

condensate
N2 0.061 0.660 1.480

CO2 0.051 0.230 0.700

C1 46.848 10.350 94.020
C2 7.558 2.350 1.400
C3 4.627 1.950 0.450

IC4 1.021 1.620 0.200

NC4 2.421 4.000 0.280

IC5 1.358 3.600 0.150

NC5 2.288 2.280 0.160

C6 3.953 2.740 0.210

C7 3.084 2.150 0.210

C8 1.910 2.420 0.150

C9 2.645 2.150 0.140

C10 2.084 3.130 0.120

C11 2.012 2.520 0.100

C12+ 18.080 57.850 0.240

Table 4- C12+ Molecular Weight and Specific Gravity.

Specific Gravity Molecular Weight Reservoir Fluids

0.884 340.95 B-Black oil

1.047 485 C-Heavy oil

0.92 201.23 D-Gas 
condensate
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Figure 7- Objective function minimization with simulated annealing optimization of PC-SAFT equation of state-200 Iterations-sample A

Figure 8- Objective Function Minimization with Simulated Annealing Optimization of PC-SAFT Equation of State-500 Iterations-Sample A 

Figure 9- Comparison between simulated annealing and No Optimization for EOS tuning gas oil ratio­sample B – PC SAFT EOS

Iterations number

Iterations number
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Figure 10- Comparison Between Simulated Annealing and No Optimization for EOS Tuning Oil
 Formation Volume Factor ­Sample B – PC SAFT EOS.

Figure 11- Comparison Between Simulated Annealing and No Optimization for EOS Tuning Gas Oil ratio­Sample C – PC­SAFT EOS 

Figure 12- Comparison Between Simulated Annealing and No Optimization for EOS Tuning Gas Oil
 Formation Volume Factor - Sample C - PC-SAFT EOS.
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Figure 13- Liquid Dropout of Gas Condensate Fluid- Sample D - in CVD Test at 246 oF Before and After Optimization – PC­SAFT

Here again the quality of optimization is in good agree-
ment with experimental data. Reproduction of all                              
categories of experimental data is another point to 
ponder for PC-SAFT with stronger theoretical basis 
as observed in following figures. For a complex prob­
lem, such as tuning of equations of sate, methods such 
as greedy algorithm (exhaustive search) usually do not                                                                                                            
produce good results since they could be trapped into a 
local optimum. Greedy algorithm cannot guide the trans-
formation out of the local to the global optimum due to 
its total random characteristics. As seen in Figures 11 and 
12, unlike simple algorithm such as exhaustive search,                                                                                                        
advanced global optimization algorithm of simulated 
annealing accepts all generations with a probability. This 
mechanism facilitates speed of convergence and avoids 
being trapped at local optima. The trends in those figures 
prove this claim. 
   In the case of gas condensate system, sample D;             
optimization was carried out for PC-SAFT. Here,                    

constant volume depletion (CVD) and constant compo-
sition (CCE) tests were used. Objective functions in the 
form of equation 27 were used again, but liquid dropout 
and cumulative gas produced, in the case of CVD, and                                                                                                     
relative volume and liquid volume in the case of CCE, 
were used instead of gas oil ratio, oil formation volume 
factor and specific gravity. The first PVT test simulated 
on this sample is constant composition expansion (CCE). 
CVD test is performed on gas condensates to simulate 
reservoir depletion performance and compositional vari-
ation. The test provides a variety of useful and important 
information used in reservoir engineering calculations. 
The pressure is reduced differently in pressure steps, 
from the saturation pressure to a predetermined level P 
and liquid condenses. The gas is removed to reach the 
original volume. Therefore, the liquid is accumulated in 
each step. The results for CVD, sample D, are shown in 
Figures 13 and 14.

Figure 14- Cumulative Gas produced - Sample D - in CVD Test at 246 oF Before and After Optimization – PC­SAFT
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Figure 15- Relative Total Volume - Sample D - in CCE Test at 246 oF Before and After Optimization – PC­SAFT

List of Symbols
AAD%      Average Absolute Deviation Percent
exp            Experiment
MW          Molecular Weight
yi              Mole fraction
fi               Fugacity 
          Fugacity Coefficient

Ki             Equilibrium Ration
Max         Maximum 
Min          Minimum
T               Temprature
P               Pressure
ε/K            Square Well Potential
σ               Segment Diameter
m              Segment Length
R              Universal Gas Constant
DL             Differential Liberation
CCE          Constant Composition Expansion
CVD          Constant Volume Depletion
PVT            Pressure Volume Temperature
EOS           Equation of State
PC SAFT   Perturbed Hard Chain SAFT

It can be found from these figures that SA optimization is 
very effective in reproducing liquid dropout and cumu-
lative gas produced during CVD. The produced figures 
with optimized model follow the trends of experimental 
data and can be used for future reservoir engineering cal-
culations. In CCE experiment simulation, the reservoir 
sample is placed under a pressure higher than saturation 
pressure. Then, the pressure is decreased step by step 
down to a pressure much lower than saturation pressure. 
In each step, a flash calculation is performed and the 

relative oil volume (ROV) is determined as:
ROV= (total  volume at specified pressure)/(total  volume 
at saturation pressure)                                               (28)

     In the case of CCE test, the results are shown sche-
matically in Figure 15. Again, the results show high 
predictive capabilities of the PC-SAFT to follow the 
physical trends in the experimental data. The results also 
represent robust feature of the optimization algorithm 
used in this study.

Conclusion 
Simulated annealing technique has been successfully             
applied to parameter optimization for PC-SAFT for                                                                                                         
petroleum reservoir fluids. New correlations were devel­
oped and used to characterize petroleum fractions. The 
applicability of the simulated annealing technique as a 
global optimization method for thermodynamic models                       
is exploited to ensure effective continuation of the                                                                                                       
algorithm. Equilibrium conditions and PVT data are 
used to tune equation of states. In this algorithm, simu-
lated annealing transforms the optimization out of the 
local optimums. 
   The results show that optimized EOS is close to                    
experimental PVT data. In the case of equilibrium com-
position matching, when, there are no uncertainties in 
the PC-SAFT component parameters, the main source 
errors is handled by binary interaction parameters, 
which makes clear that the equation itself, according 
to stronger  theoretical basis, has less deviation from                                                                                          
experimental data. It is also concluded that, generally 
PC-SAFT equation has less uncertainties and reproduces                      
all properties accurately after optimization.
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