
Abstract
This work evaluates the Proxy model application representing the production system for integrated simulation with 
a reservoir to reduce computational time while preserving the representativeness of financial return and hydrocarbon 
production behavior relative to a reference model. It includes specific Proxy models for production systems in inte-
grated simulations that include their geometrical parameters, focusing on field production strategy optimization. The 
production system’s Proxy models are developed through response surface methodology (RSM) and artificial neural 
network (ANN), which are generated and validated from a medium fidelity model (MFM). The validation is performed 
by cross-checking simulations. The developed RSM-based Proxy model obtained the highest representativeness by 
combining discrete variables (pipe segment diameters and the gas flow rate for artificial lift) with split continuous 
variables (lengths of the production column and flowline, liquid rate, and water cut) using several response surfaces. 
The developed ANN-Based Proxy model enhanced representativeness by combining all variables and increasing the 
number of MFM samples for ANN training. The RSM-Based Proxy model was selected due to its lower residual val-
ue than the ANN-Based Proxy model. The results from the production strategy of the simulated Proxy model in the 
MFM showed a difference of 4% in net present value compared to the simulation of the reference model, with both 
strategies obtained inside a production strategy optimization process. The reduction of computational time was close 
to 30% with the selected Proxy model, which it presents an advantage of using the proposed approach in optimization 
applications. The developed methodology provides an alternative to replace more robust production system models 
in integrated simulations with several advantages, such as: reduction of computational times, applications in more 
complex problems, and better-exploring uncertainties, and thereby,  faster decision-making is obtained.
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Introduction
In the development of current oil production projects, 
given the high investments involved, adequate decision-
making is necessary to maximize the hydrocarbon 
production performance and the financial return. 
The evaluation of the production strategy demands 
the integration between the reservoir and production 
systems, as this considers dynamic changes in the 
reservoir, leading to a more realistic analysis of the field 
production [1-5]. 
For decision-making, studies involving integrated 
optimization processes can require many numerical 
simulations, influencing the way to obtain their 
results. These studies have been applied in petroleum 
engineering, where the main objective is to plan 
production strategies with a convenient financial return 
for the development and management of oil fields. 

Objective functions (net present value or oil recovery 
factor, for instance) have been evaluated in optimization 
processes to assess long-term decision variables, such 
as well placement, processing capacities, and schedules 
for drilling, completion, and interconnection of wells 
[6]. For the integrated simulation, an integrated model is 
compounded by the model that represents the reservoir 
and another model that represents the production system, 
consisting of wells, gathering systems, flow networks, 
and surface installations. Simulations of integrated 
models with reservoir and production systems are time-
consuming because of the complexity of these models. 
Reservoir modeling simplification is usually employed 
for the feasibility of time-consuming studies, and it can 
be categorized as physics-based simplifications, data-
driven simplifications, and the hybrid approach, in which 
both simplifications are combined [7]. 
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Within the physics concept, fidelity is used to categorize 
simulation models with different degrees of reservoir 
description [8]. A higher-fidelity model (HFM) is a high grid 
cell resolution model regarding all possible geological and 
fluid model details that it may represent and run using the 
numerical simulator. Normally, HFM is computationally 
expensive with an expected higher quality of the results 
(accuracy). Medium-fidelity model (MFM) is a moderate-
detailed model with a feasible running time and an expected 
acceptable quality of results. The low-fidelity models (LFM) 
refer to models that present a simplified degree of reservoir 
description related to rock and/or fluid properties derived 
from a medium-fidelity model (MFM). The advantage of 
using LFM is that it reduces the computational demand 
despite the expected lower accuracy.
Data-driven simplifications use data to build models trained 
(using regression techniques or machine learning) to learn 
and mimic the forecast behavior of reservoirs. Examples are 
time-dependent type curve (decline) models [9] and surrogate 
reservoir models trained with machine learning [10].
The hybrid physics-based and data-driven model takes 
advantage of physical phenomena (flow in porous media) 
and data observations (real data from the petroleum field) for 
standard practices in reservoirs. It is a new field of research 
that combines the interpretability, robust foundation, and 
understanding of a physics-based modeling approach with the 
accuracy, computational efficiency, and pattern-identification 
capabilities of data-driven. This model generally uses 
machine learning and artificial intelligence algorithms.
The Proxy model is an analytical function that provides a 
quick estimate of an objective function of a simulation model. 
An example of a Proxy model is the polynomial regression 
model obtained by response surface methodology (RSM). 
Its quality depends on the mathematical approach, the input 
used for its construction, and the complexity of the modeled 
system because this methodology involves the statistical 
design and different possible proxies that can be obtained, 
which may significantly affect the results. Another example 
of a Proxy model is the surrogate reservoir model, a Proxy 
model based on an artificial intelligence technique (artificial 
neural network - ANN) to represent the behavior of a history-
matched reservoir simulation model [7].
Proxy models have been used in several reservoir engineering 
applications, including uncertainty modeling, sensitivity 
analysis, and history correspondence, among others [11-12], 
risk evaluation and analysis [12-13], performance forecast, 
upscaling [14], production history study [15] for complete 
reservoir simulations [10-,16], reduced models [17] and 
optimization [18-19].
Studies in the literature involve Proxy models for production 
systems, which focus on design and operation optimization 
[20-21]. The authors applied multidimensional piecewise-
linear models to approximate the nonlinear functions of 
multiphase-flow simulations for production optimization 
of gas-lifted oil wells under facility, routing, and pressure 
constraints.
Some researchers developed a fast and accurate Proxy 
model for gas pipeline networks based on second-degree 
polynomial equations to model pressure drop in pipeline 
segments, maximizing oil production while maintaining safe 

and sustainable levels of CO2 content and pressure in the gas 
stream [22].
Other authors used a methodology based on multidimensional 
segmented linear (piecewise) regression, obtaining a Proxy 
model for the integrated production system with a reservoir 
running explicit integration [17]. The authors proposed a 
more efficient interaction between the simulators, avoiding 
repetitions in production system simulation, reducing the 
total time of the numerical coupling, and accelerating the 
decision-making process in the field.
A new Proxy model based on neural networks, which integrates 
reservoir and surface behavior, was proposed recently [23]. 
All proxies provide production curves for the complete 
production period, replacing an integrated reservoir and 
surface system simulators for well placement optimization. 
In the simplified, integrated model, the representation of 
the entire reservoir external system is accomplished with 
multiphase flow tables. These tables are generated before 
reservoir simulation and subsequently included in the 
reservoir simulation file (during the optimization process).
However, to our best knowledge, no studies have evaluated 
specific Proxy models for production systems in integrated 
simulations that include their geometrical parameters, 
focusing on field production strategy optimization. The 
dynamics of the reservoir and production systems are 
different, and there are situations in which a particular 
production system response is very similar or well-known 
over time, indicating the possibility of incorporating 
simplified models as Proxy models.
The current work develops a Proxy model (RSM and ANN-
based) for the well and gathering system. It compares the 
selected one with a medium fidelity model (MFM) for 
production systems through integrated optimization of a 
production strategy based on [6, 24]. 
The evaluation considers the performance of the financial 
return, the fluid production and injection behavior, and the 
computational time of the total simulations. In this way, it is 
possible to verify if the Proxy model presents reliable results 
similar to that obtained by the MFM in this case study, providing 
an alternative for other studies and production projects.

Motivation
The use of integrated Proxy models for production systems 
over complex reservoir models can be representative 
depending on the application. In field development 
optimization studies, evaluating an oil field production using 
a model that enables finding fast and reliable solutions is 
important. The optimization process involved in this type of 
problem has a high computational cost due to the intensive 
use of physical simulators. Also, a simplified model can 
show good fidelity compared to a more complex one. Thus, 
shorter computational times can be achieved similarly to real 
situations, promoting efficient decision-making. 
In this way, the influence of important stages in optimizing 
production strategies to evaluate the production performance 
of a field could be determined more quickly and easily, and 
the choice of the best strategy can be more effective.

Objective
This work aims to develop a Proxy model (RSM- and ANN-
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based) for a production system representative of integrated 
simulations with reservoirs derived from the MFM for 
the same production system in decision-making based on 
production strategies. Based on this developed model, a 
comparison is made between the financial and production 
performances of the MFM and the Proxy model integrated 
with a reservoir model through the optimization of the 
production strategy to verify similarities between the models 
and the feasibility of using the Proxy model to replace the 
MFM.

Materials and methods
Proxy Model Development and Validation

Developing a Proxy model representing the production system 
was proposed as an alternative to the MFM and considered 
a reference for this study for developing an integrated oil 
field. Two different approaches for Proxy modeling were 
evaluated: RSM-based and ANN-Based.

RSM-Based Proxy Model
Response surface models are commonly referred to in 
statistical literature. Even though this model does not exactly 
approximate the experimental data, response surface models 
have been widely adopted in the petroleum industry due to 
their ease of understanding, flexibility, and computational 
efficiency. Their general formulation for quadratic polynomial 
regression can be given by Equation 1:
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where x is a vector of input variables of length nd, xi is a 
linear term, xixj is a cross term, xi

2 is a quadratic term, and 
β0, βi, βij, βii represent unknown regression coefficients for 
constant, linear, cross, and quadratic terms respectively. Beta 
terms are estimated using the least squares approach.
Estimation of the response surface model includes (1) 
selection of the terms to be included in the model, (2) 
selection of an experimental design for building a second-
order (quadratic) model, and (3) calculation of the regression 
coefficients. This Proxy model performs poorly for highly 
nonlinear multidimensional spaces [16].
The evaluations for obtaining the RSM-Based Proxy for the 
production system are based on [25] using response surfaces, 
and, in this study, three phases are considered. Response 
surfaces are obtained through experimental statistical 
planning (factorial design) to represent the Proxy model.
Variables considered important in the production system 
are selected, including those that are operational (e.g., 
injection gas flow for the artificial method of lifting by a gas 
lift and flow of produced liquid), design (e.g., internal pipe 
diameters, lengths of production columns and marine pipes, 
valve position for gas lift), and uncertainties (e.g, water 
fraction - BSW and gas-oil ratio - GOR) which in various 
combinations between them generate models for different 
simulations to obtain the respective responses, as example, 
well head pressure (WHP) or bottom-hole pressure (BHP).
In generating each response surface, an adjustment value is 
obtained - R² (coefficient of determination) and compared 
to a minimum pre-established value considered in the first 

analysis as part of having an accepted response surface. 
The definitive approval of the RSM-Based Proxy model 
(composed of one or more response surfaces) occurs by a 
validation test with random data of the variables included 
in the respective operating ranges that can confirm the 
representativeness of the model. Thus, new simulations are 
carried out (with the random data on the response surfaces), 
and the results are correlated with those obtained by 
generating each response surface that is initially developed. 
Another correlation coefficient between the new evaluations 
must be evaluated to validate the response surfaces.
The development of an RSM-Based Proxy model initially 
represented by a single response surface is generated through 
all selected variables and regarded as important in the 
production system, considering the operational limits adopted 
by each one. Each combination is simulated, generating the 
response adopted at work. The factorial design produces 
several combinations and responses, generating a response 
surface model representing the Proxy model, denominated 
as Phase 1.
If the correlations between models do not satisfy the 
minimum adjustment values stipulated, Phase 2 is started by 
performing the same procedure, fixing some variable values, 
and considering the rest with their respective operational 
limits. A response surface is defined for each combination of 
fixed variables, and it must answer the same validation criteria 
as in Phase 1. If it does not satisfy the minimum stipulated 
values, Phase 3 is started. This last phase evaluates impacting 
variables on production performance and selects them for 
news analysis with sectioned limits. The initial evaluation 
considers splitting the operating limit ranges in half, and the 
procedure for each range is carried out in the same way as 
the previous phases. At some point in the evaluation, with a 
certain operating range for one or more variables, the related 
criteria must be satisfied.
The final RSM-Based Proxy model is the composition of all 
response surfaces referring to the operational ranges evaluated 
and validated for the impacting variable in production with 
fixed and non-fixed variables. 

ANN-Based Proxy Model
An artificial neural network is an emulation of a biological 
neural system. ANN consists of base elements – nodes, 
analogous to neurons in biological systems. Any node 
receives signals from neighboring nodes and processes 
them to provide a single output. To construct an artificial 
neural network, the user must define its topology, including 
the number of hidden layers, nodes per hidden layer, and 
activation function. Then, input weights should be estimated 
for every node. The number of hidden layers and nodes 
influences the ability of the neural network to reproduce 
different degrees of non-linearity. However, the number of 
hidden nodes is restricted by several experiments used in 
ANN construction [16].
The evaluations for obtaining the ANN-Based Proxy for 
the production system are based on [26] using nonlinear 
regression approaches based on the Group Method of Data 
Handling (GMDH). 
GMDH is a family of mathematical modeling and nonlinear 
regression algorithms [27]. This approach, also known as
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Polynomial Neural Network, can be assumed as a specific 
type of supervised Artificial Neural Network (ANN). In 
addition to modeling specifications, GMDH uses the idea of 
Natural Selection to control the network size, complexity, and 
accuracy. The main application of GMDH is the modeling 
of (1) complex systems, (2) function approximation, (3) 
nonlinear regression, and (4) pattern recognition.
A complex multidimensional decision hypersurface can be 
approximated by a set of polynomials in the input signals 
containing information about the hypersurface of interest. 
Using a multilayered perceptron-like network structure, 
the approach fits a high-degree multinomial to the input 
properties. Thresholds are employed at each layer in the 
network to identify those polynomials that best fit into the 
desired hypersurface. Only the best combinations of the input 
properties are allowed to pass to succeeding layers, where 
more complex combinations are formed. Each element in 
each layer in the network implements a nonlinear function of 
two inputs. The coefficients of each element are determined 
by a regression technique, which enables each element to 
approximate the true outputs with minimum mean-square 
error. For further information, readers can refer to [27].
Variables considered important in the production system 
are the same as previously selected, including those that 
are operation, design, and uncertainties, which in various 
combinations between them generate models for different 
simulations to obtain the respective responses, for example, 
well head pressure (WHP) or bottom-hole pressure (BHP).
Simulations are carried out with the random data for MFM 
representing the production system to generate an original 
dataset (dataset the model uses to learn from data).
In generating the artificial neural network, the model is trained 
over a subset of the original dataset. For this set, an adjustment 
value is obtained - R² (coefficient of determination) and 
compared to a minimum pre-established value considered in 
the first analysis as part of having an accepted ANN. 
The definitive approval of the ANN-Based Proxy model occurs 
by a validation test with another subset of the original dataset 
of the variables included in the respective operating ranges 
that can confirm the representativeness of the model. Another 
correlation coefficient must be evaluated so that the ANN can 
be validated. If the correlation coefficients are unacceptable, 
the dataset size is increased to allow a new ANN training.

Proxy Model Selection
RMSE (Root Mean-Square Error) is used to measure the 
total residuals between modeled values (Proxy outputs) and 
the observed values (simulator outputs). Equally, normalized 
RMSE (NRMSE) is used to measure the discrepancy between 
Proxy and simulation results and quantify the forecasting 
quality of proxies. Equation 2 calculates this indicator:
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where y  is the Proxy output, y is the simulator output, and
y  is the mean of forecasts from the training dataset [28].
The Proxy model with the lowest RMSE and NRMSE, mostly 
near zero, will be selected for application for the following 
items.
Proxy Model Application and Comparison with MFM 

through the Optimization of the Production Strategy in 
an Integrated System
Evaluation and Comparison Between the MFM and the Proxy 
Model through a Production Strategy

Before the evaluation in stages of the production strategy, 
the validated Proxy model is submitted to a simulation 
integrated into the reservoir to verify its financial and 
production performance. Using the same production strategy, 
it is then compared with the same performances obtained 
from the MFM integrated to the reservoir. Suppose there is 
a considerable divergence between the results. In that case, 
the process is re-evaluated and restarted, returning to proxy 
model development and validation. If the results are similar 
and within certain criteria adopted, the production strategy 
can be optimized.

Evaluation Description in Stages of the Production 
Strategy
The evaluation using sequential optimization in stages is 
performed according to [29]. The financial performance, 
the evaluation requirement, is calculated by the objective 
function of the NPV (net present value). In five stages, the 
resulting configurations with the highest NPV are selected.
Stage 1 evaluates the number of producer and injector wells. 
Stage 2 evaluates configurations with the coordinates of all 
wells involved. Stage 3 analyzes the pipe diameters and gas 
injection rate. Stage 4 seeks to coordinate for the platform 
in the field. Through potential areas, coordinates are then 
arbitrated. Stage 5 verifies the production and injection 
capacities of the platform.
The process is iterative in optimization cycles, and the number 
of cycles can vary depending on an established stopping 
criterion. A following cycle is performed considering the 
best result from Stage 5 of the previous cycle, and the same 
procedure is performed. If the final NPV of the next cycle is 
equal, or the difference between NPVs is within the value 
of the stopping criterion, the process is ended; otherwise, 
another cycle is performed. 
The simulation times are compared in both optimizations 
of integrated models. The computational times of the Proxy 
model stages are verified as the total time involved in the 
entire cycle analysis. 
The stages of sensitivity of the production strategy are 
evaluated, and in this analysis, the stages that most impact 
the increase in financial return are verified.
In addition, the final production strategies and the behavior 
between models involving oil and water production in the 
field are compared. The results are verified if there is a 
similarity or divergence among the results and if the Proxy 
model can be representative in the integrated simulations.

Application 
The study was developed using data from the UNISIM-II-D 
benchmark [30-31], which represents a carbonate model of 
the reservoir with several characteristics, such as a depth of 
5,000 m from the surface, reservoir temperature of 58 ºC and 
the initial reservoir pressure of 450 kgf/cm². More details are 
found in the cited publications. 
The characteristics of the fluids used are the same as those 
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mentioned in [29]: the relative densities of oil, gas, and water 
of 0.862, 0.863, and 1.01, respectively; GOR (gas-oil ratio) 
of 233.8 m³/m³; oil viscosity at roughly 1.14 cP, and CO2 
molar fraction of 8.24%.
Empirical correlations of multiphase flow by Beggs and 
Brill [32] were used for the MFM of the production system. 
The correlation of Standing [33] was used for fluid. The 
production system consisted of 12 producer and 8 injector 
wells (all satellite wells), composed of a production/injection 
column with a gas lift valve, submarine flowline, and riser 
connected to a platform represented by nominal production 
and injection capacities. The base scenario of the production 
system was the same as [4, 29]. 
The wells had distinct conditions (different productivity 
index - PI), and the geometry considers the scenario of 
satellite wells (similar for all wells) with variation in pipe 
lengths (production column and maritime flowline), which 
depends on the depth of each well and their distance to the 
platform. Thermal calculation was not considered, assuming 
a linear temperature gradient in pipes.
The economic model considered for calculating the objective 
function NPV is described in sequence through considerations 

based on [4, 29].
Equation 3 calculates the platform cost (Invplat):

0.84(417 16.4 3.15 3.15 0.1 )o w wplatInv Cp Cp Ci nw= + + + +              (3)

Cpo, Cpw, and Ciw are platform capacities for oil and water 
production and injection, respectively. The nw is the number 
of wells connected to the platform.
To calculate the objective function (NPV), the equations and 
parameters remained like those of [6]. The objective function 
considered net cash flow over a field’s lifetime. In this project, 
the net cash flow for each period was calculated based on the 
Brazilian R&T fiscal regime considering gross revenues from 
oil and gas sales, total amount paid in royalties (charged over 
gross revenue), total amount paid in special taxes on gross 
revenue, operational production costs associated to the oil 
and water production and water injection, corporate tax rate, 
investments on equipment and facilities, and abandonment 
cost.
The main fiscal assumptions and the economic scenario are 
described in Table 1. Economic parameters for the production 
system are described in Table 2. The value ID is related to 
piping inner diameter in inches.

Table 1 Economic scenario of parameters [24].
Parameters Value Unit
Oil price 257.9 USD/m3
Oil production cost 48.57 USD/m3
Gas price 0.026 USD/m3
Gas production cost 0.013 USD/m3
Gas injection cost 0.014 USD/m3
Water production cost 4.86 USD/m3
Water injection cost 4.86 USD/m3
Investment on platform Eq. (1) USD millions
Abandonment cost (% investment in drilling and completion) 8.2% -
Annual discount rate 9% -
Corporate tax rate 34% -
Social tax rate—charged over gross revenue 9.25% -
Royalties rate—charged over gross revenue 10% -

Table 2 Economic parameters for the production system [24].
Economic parameters Technical parameter/ decision variable Value ID (in) Cost Unit

Investment in connection (well-platform) of 
vertical wells

Flowline
6 647 USD/m
8 1,666 USD/m

Riser
6 1,276 USD/m
8 2,189 USD/m

Riser and flowline installation 9.86 USD millions

Investment in drilling and completion of ver-
tical wells 

Production column 5 228 USD/m
Drilling and completion 18.35 USD millions

Additional investment in connection for arti-
ficial lift

Injection flowline 4 346 USD/m
Riser 4 742 USD/m
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Proxy Model Development and Validation
RSM-Based Proxy Model

A satellite well model was considered the basis for 
constructing the response surface [4, 29]. 
Phase 1 considers all the variables selected for the study and 
their operational limits adopted. For this situation, a single 
response surface was generated. Factorial design (Central 
composite–centered) was chosen to obtain the response 
surface using the Cougar Software (Beicip).
The variables for designing experiments and obtaining the 
response surface are described in Table 3; these are the 
lengths of the pipes (production column - PC, flowline - FL, 
riser - RI with a fixed length of 166 m), liquid flow rate (QL), 
water fraction (BSW), gas injection flow rate for the artificial 
lift method by gas lift (Qgi), and internal pipe diameters (ID) 
[4, 29]. The design of experiments considered the response 
to bottom-hole pressure (BHP) calculated in the MFM 
simulator for each combination. For the generation of the 
response surface, 65 simulations were performed considering 
the operational ranges of the variables.
The Marlim multiphase flow simulator developed by 
Petrobras S/A was used for MFM simulations. The simulator 
was prepared for BHP generation and used to develop the 
response surface in the Cougar Software.
The validity test selected random values within the variables’ 
limits on the generated response surface. The number of 
simulations carried out was 2,000 in the MFM to obtain the 
respective answers (BHP). 
Phase 2 (Table 4) considered fixed values for certain variables 
(pipe ID and Qgi) as possible discretization values. The other 
variables’ respective operating ranges were considered.
A specific response surface was generated using the same 

experiment design in each combination of fixed and non-
fixed variables. There were 27 combinations of the variables, 
each generating 25 simulations, totaling 675 simulations for 
generating response surfaces. 
The combinations of the fixed variables that involve the 
diameters of the pipes are denominated as standard abc; with 
(a) for the production column (PC), (b) for the flowline (FL),
and (c) for the riser (RI). All diameters are in inches. The
following includes the injection gas flow rate for the gas lift
(Qgi) in m³/day, maintaining the format [abc–Qgi].
In this step, only the 5-inch diameter for PC was used because
of the increase in the number of demanded response surfaces,
and this value presents a better financial return combined
with greater oil production [4, 29].
For each of the 27 response surfaces, random variables
were selected within the operational ranges of the non-fixed
variables for verification of responses (BHP) and correlated
with the values obtained by the response surfaces with the
operational ranges (maximum and minimum limits) initially
considered in the construction of the response surfaces.
The validation tests required 64 more simulations for each
combination, running a total of 1728 simulations for the
validation criterion to be attended.
For Phase 3, the variable QL was selected since it had the
greatest impact among the variables analyzed (QL, BSW, and
lengths of the production column and flowline).
A total of 96 response surfaces were created, with 25
simulations totaling 2,400 simulations. The validation test
for these combinations was performed with 64 simulations
totaling 6,144 simulations.
The response surface is accepted with a coefficient
of determination R² ≥ 0.99. For validation, the valid
determination correlation is R² ≥ 0.95.

Table 3 Values of the parameters used in the factorial design experiments to obtain the response surface.
PC (m) FL (m) QL (m³/day) BSW (%) Qgi (m³/day) ID-RI (in) ID-FL (in) ID-PC (in)
4,624 1,000 1,200 0.0 0 4 4 3
4,657 2,099 1,850 47.5 100,000 6 6 4
4,690 3,197 2,500 95.0 200,000 8 8 5

Table 4 Combinations of fixed and non-fixed variables with their operational ranges for generating response surfaces representing the RSM-
Based Proxy model.
Fixed Variables Variables with Operational Ranges
ID pipes, abc (in) – Qgi (m³/day) PC, FL, QL and BSW
544-0; 544-100,000 and 544-200,000 4500 ≤ PC ≤ 4700 (m)

1000 ≤ FL ≤ 6400 (m)
100 ≤ QL ≤ 2700 (m³/day)
0 ≤ BSW ≤ 95 (%)

546-0; 546-100,000 and 546-200,000
548-0; 548-100,000 and 548-200,000
564-0; 564-100,000 and 564-200,000
566-0; 566-100,000 and 566-200,000
568-0; 568-100,000 and 568-200,000
584-0; 584-100,000 and 584-200,000
586-0; 586-100,000 and 586-200,000
588-0; 588-100,000 and 588-200,000
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ANN-Based Proxy Model
The same satellite well from the previous field item was con-
sidered the basis for the construction of the ANN. 
Table 5 presents each variable with minimum and maximum 
values in each column (representing the range of validity 
for each variable) used to generate the complete dataset for 
GMDH training and validation. Qgi, ID-RI, ID-FL, and ID-
PC were considered fixed as described in the RSM-based 
proxy model.
The Marlim multiphase flow simulator was used for simu-
lations involving the MFM. The simulator was prepared for 
BHP generation and was used to develop the GMDH in Mat-
lab Software (Mathworks) based on [26].
The GMDH network was set with a maximum number of 
neurons in a layer of 15, a maximum number of layers of 4, 
a selection pressure in layers of 0.6, and a train ration (ver-
sus validation ratio) for an original dataset of 0.28 (similar 
to RSM-Based Proxy model). A full dataset of 12,000 MFM 
samples was generated.
The ANN training is accepted with a coefficient of determi-
nation R² ≥ 0.99. The valid determination correlation for val-
idation is R² ≥ 0.95, the same values applied to the previous 
Proxy model.
Evaluation and Comparison between Models by Production 
Strategy
As an initial case for the problem, a production strategy was 
determined through a static quality map (NTG-Phi-So and 
effective permeability) with 12 producer and eight injector 
wells, focusing on the carbonate matrix, alongside the veri-
fication of the streamlines of original wells to determine the 
radius of influence of the wells. Structural tops, hydraulic 
compartments, potential of gravitational oil, minimum spac-
ing among wells, and initial oil saturation were also verified. 
The bottom-hole position of the wells in this carbonate field 
was also considered, including the platform’s initial alloca-
tion (X = 355,400; Y = 7,516,500), to model the production 
system simulation. From [29], the pipe diameters used were 
5in for the production column and 6in and 8in for the flow-
line and riser with varying combinations and evaluations be-
cause, with these configurations, the results showed greater 
performance in the financial return. The values used for the 
initial Qgi of 100,000 m³/day and the platform capacity of 
85% were selected as initial values based on the same work. 
The evaluation of the production strategy verified the prox-
imity of the results in terms of NPV (differences up to 10% 
would be accepted) of the results between integrated models. 
The optimization of the production strategy included the fol-
lowing evaluation stages: number of wells (E1), allocation of 
wells (E2), sensitivity analysis of the pipe diameters and gas 
injection flow rates for the artificial lift (E3), platform allo-
cation (E4), and platform capacity (E5). Part of the assumed 
values, mainly related to pipe diameters and platform capac-
ity, were considered based on [29].
The sequence of these stages represents one cycle, and the 

number of cycles to be performed depends on the final values 
of each cycle, that is, the configuration that best presents the 
financial return by NPV. For NPV values equal to or above 
7%  relative to the previous cycle, another cycle of analy-
ses was performed. If it is less, the optimization was finished 
without new cycles.
The computational times of each stage of the production 
strategy and the total evaluation time were analyzed and 
compared.
The explicit integration technique used in the simulations 
between the reservoir and production system was based on 
[3]. This technique poses an advantage, as it allows the cou-
pling of several simulators to model the system properly and 
promotes flexibility to include well management alternatives 
and external software. The reservoir model was simulated by 
the IMEX™ software (CMG), coupled to the Proxy model 
via the internal coupler program.

Analysis of the Number of Wells
This assessment (E1) occurred according to Table 6, which 
describes the sequence of simulations up to the total num-
ber of wells in this field (method adopted in this work). The 
number of wells initially adopted, and the combination form 
may differ depending on the study’s objectives. Forty-six 
simulations (S) were performed with different combinations 
of wells and the configuration containing a certain number 
of wells. 

Analysis of Well Allocation
For the best result obtained in E1, coverage areas for each 
well without overlap were selected. The areas were different 
because of the heterogeneous distribution of the wells in the 
field. With the areas defined, simulations assigned several 
coordinates for each well. The criteria for choosing the areas 
contemplated regions that did not overlap the wells initially 
considered with a distance of each area of each well of at 
least 100 meters in the possible spaces between the wells. 
Because the areas are vast, the optimization methodology 
used was the Iterative Discrete Latin Hypercube (IDLHC). 
IDLHC is a population-based optimization method that uses 
an iterative process based on the discrete Latin hypercube 
sampling method to maximize the objective function. At each 
iteration, the method selects the best samples and gradually 
reduces the search space, treating the frequency distribution 
as a posteriori of the levels of each variable. The advance of 
the method depends on three parameters only: (1) the number 
of iterations, (2) the number of samples, and (3) F, the cut 
percentage [34]. 
Fig. 1 shows the position of the wells in the field in the ini-
tial stage, with the chosen areas not overlapping and different 
from each other, according to the arrangement of the wells 
used to evaluate Cycle 1. The same procedure was used to 
select new areas for the disposal of wells in Cycle 2.

Table 5 Values of the parameters used in the original dataset to obtain the GHMD.
PC (m) FL (m) QL (m³/day) BSW (%) Qgi (m³/day) ID-RI (in) ID-FL (in) ID-PC (in)
4,500 1,000 100 0.0 0 4 4 3
4,700 6,400 2,900 95.0 200,000 8 8 5
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Table 6 Chosen configurations for simulations (S) with the number of wells (NW) evaluated and which wells were involved in the analysis 
(E1).
S NW Wells S NW Wells
1 2 Prod-1,Prod-2 24 11 Prod-1,...,Prod-10,Inj-1
2 3 Prod-1,...,Prod-3 25 12 Prod-1,...,Prod-10,Inj-1,Inj-2
3 4 Prod-1,...,Prod-3,Inj-1 26 13 Prod-1,...,Prod-10,Inj-1,...,Inj-3
4 5 Prod-1,...,Prod-4,Inj-1 27 14 Prod-1,...,Prod-10,Inj-1,...,Inj-4
5 6 Prod-1,...,Pros-4,Inj-1,Inj-2 28 15 Prod-1,...,Prod-10,Inj-1,...,Inj-5
6 6 Prod-1,...,Prod-5,Inj-1 29 16 Prod-1,...,Prod-10,Inj-1,...,Inj-6
7 7 Prod-1,...,Prod-5,Inj-1,Inj-2 30 17 Prod-1,...,Prod-10,Inj-1,...,Inj-7
8 7 Prod-1,...,Prod-6,Inj-1 31 12 Prod-1,...,Prod-11,Inj-1
9 8 Prod-1,...,Prod-6,Inj-1,Inj-2 32 13 Prod-1,...,Prod-11,Inj-1,Inj-2
10 9 Prod-1,...,Prod-6,Inj-1,...,Inj-3 33 14 Prod-1,...,Prod-11,Inj-1,...,Inj-3
11 8 Prod-1,...,Prod-7,Inj-1 34 15 Prod-1,...,Prod-11,Inj-1,...,Inj-4
12 9 Prod-1,...,Prod-7,Inj-1,Inj-2 35 16 Prod-1,...,Prod-11,Inj-1,...,Inj-5
13 10 Prod-1,...,Prod-7,Inj-1,...,Inj-3 36 17 Prod-1,...,Prod-11,Inj-1,...,Inj-6
14 11 Prod-1,...,Prod-7,Inj-1,...,Inj-4 37 18 Prod-1,...,Prod-11,Inj-1,...,Inj-7
15 9 Prod-1,...,Prod-8,Inj-1 38 19 Prod-1,...,Prod-11,Inj-1,...,Inj-8
16 10 Prod-1,...,Prod-8,Inj-1,Inj-2 39 13 Prod-1,...,Prod-12,Inj-1
17 11 Prod-1,...,Prod-8,Inj-1,...,Inj-3 40 14 Prod-1,...,Prod-12,Inj-1,Inj-2
18 12 Prod-1,...,Prod-8,Inj-1,...,Inj-4 41 15 Prod-1,...,Prod-12,Inj-1,...,Inj-3
19 10 Prod-1,...,Prod-9,Inj-1 42 16 Prod-1,...,Prod-12,Inj-1,...,Inj-4
20 11 Prod-1,...,Prod-9,Inj-1,Inj-2 43 17 Prod-1,...,Prod-12,Inj-1,...,Inj-5
21 12 Prod-1,...,Prod-9,Inj-1,...,Inj-3 44 18 Prod-1,...,Prod-12,Inj-1,...,Inj-6
22 13 Prod-1,...,Prod-9,Inj-1,...,Inj-4 45 19 Prod-1,...,Prod-12,Inj-1,...,Inj-7
23 14 Prod-1,...,Prod-9,Inj-1,...,Inj-5 46 20 Prod-1,...,Prod-12,Inj-1,...,Inj-8

Fig. 1 Exemplification for determining the areas for initial well allocation.
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The IDLHC methodology was performed with the 
parameters used by [24]: number of iterations = 8, number 
of samples (N) = 75, and cut percentage F = 0.9. A total of 
600 simulations were run. The search space discretization 
considered a spacing of 100 meters for both vertical and 
horizontal directions within each area of each well. 

Sensitivity Analysis Involving Pipeline Diameters and Injection 
Gas Flow Rate for Gas Lift
Through the best result of E2 or E1, this evaluation (E3) was 
performed. Table 7 describes the variables used to define pipe 
diameters (PC, FL, and RI) and gas injection flow rate for the 
artificial lift method [29]. The total number of combinations 
for simulations was 12.

Table 7 PC, FL, and RI pipe diameters and gas injection flow rate 
for the artificial lift gas lift (Qgi) method.
PC (in) FL (in) RI (in) Qgi (m³/day)

5
6 6 0

8 8
100,000
200,000

Platform Allocation Analysis
This stage (E4) evaluated the best coordinate for the platform 
through the NPV. Coordinates in available areas were 
arbitrated by the new well configuration obtained in E2. 
These areas were smaller, irregular, non-continuous, and non-
adjacent. The preference was for more central coordinates of 
most wells if there are not impediments.
A minimum radius of 500 meters between the coordinates of 
each well and the coordinate of the platform was considered, 
avoiding overlapping of regions that affect operational 
interventions. At each coordinate, a sequential search was 
performed in all (X and Y) directions with a distance of 100 
meters, generating four new radial coordinates.

Platform Capacity Analysis
For the final stage (E5), five percentage capabilities were 
simulated for the platform (100, 85, 65, 45, and 25%) with 
maximum flow rates for Qo (oil flow rate) = 28,621 m³/day, 
Qw (water flow rate) = 22,897 m³/day, Qwi (injection water 
flow rate) = 38,162 m³/day, QL (liquid flow rate) = 28,261 
m³/day, and Qg (gas flow rate) = 6,668,000 m³/day. 
If there was an increase in NPV, the conducting configuration 
was adopted as the end result of the cycle and selected for 
stage E1 in the new cycle. 

Determination of Computational Simulation Times
The computational time evaluation considers the time 
consumed for each stage. At the end, the total time of a cycle 
is the sum of the computational times of each stage, including 
the assembly time of the Proxy model for this model.
In E1, the total simulation time is the sum of the simulation 
times for each configuration containing several wells 
evaluated (Table 3). The fact that each configuration has a 
different number of wells generates a different simulation 
time relative to other configurations. In E2, the average time of 
each simulation round is evaluated and cumulated, resulting 
in the total simulation time. At E3, the average time for each 
combination is considered and multiplied by the number of 
combinations, providing the total simulation time. In E4, the 
total simulation time considers a representative average time 
among all simulated cases multiplied by the number of cases. 
E5 also considers an average time multiplied by the number 
of cases.

Results and discussion
Proxy model development and validation
Development of an RSM-based Proxy Model Represented by a Single 
Response Surface

Developing a response surface resulted in a coefficient of 
determination R² of 0.99, which is considered appropriate. 
However, the validity test had an R² of 0.86, below the 
adopted criterion. Fig. 2 shows the predicted BHP values 
from the RSM-based Proxy model and the simulation results 
from MFM in Phase 1 to check model performance. This 
cross-plot is useful to understand how well the regression 
model makes predictions for different response values. The 
Proxy model was not representative, as shown in Fig. 2, and 
Phase 2 was necessary (multiple response surface). 

Development of an RSM-based Proxy Model Represented 
by Fixed and Non-fixed variables - Multiple Response 
Surfaces
Fig. 3 shows the predicted BHP values from the RSM-based 
Proxy model and the simulation results from MFM in Phase 
2 to check model performance. All combinations of variables 
fixed presented coefficients of determination related to 27 
suitable response surfaces (R² ≥ 0.99), but for validation 
between the models, 22 of then presented values below the 
adopted criterion (R² ≥ 0.95), with no representativeness, as 
shown in Fig. 3.

Fig. 2 Performance of the RSM-based Proxy in Phase 1 for BHP (kgf/cm²).
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Fig. 3 Performance of the RSM-based Proxy in Phase 2 for BHP (kgf/cm²).

Development of a Proxy Model Represented by Fixed, 
Non-fixed Variables and by the most Impact Variable - 
multiple Response Surfaces
Variables (QL, BSW, lengths of the production column, 
and the flowline) were tested by verifying the difference 
between the BHP of the Proxy model and the MFM. For each 
variable, different operational ranges were tested; the other 
variables had their operating ranges maintained in the initial 
condition (in the case of creating a single response surface), 
and the variable QL promoted greater differences in several 
operational ranges. 
Fig. 4 shows the predicted BHP values from the RSM-based 
Proxy model and the simulation results from MFM in Phase 
3 to check model performance. Specific response surfaces 
were then generated from the choice of the QL variable 
between 3 and 4 intervals. These response surfaces obtained 

suitable determination coefficients (R² = 1) and validation 
between models (R²>0.97), as shown in Fig. 4. Finally, the 
valid Proxy model was composed of 96 response surfaces. 

Development of an ANN-Based Proxy Model Represented 
by GHDM
This analysis started with 375 samples for the GHDM 
network from the original dataset, resulting in approximately 
100 samples for training (a similar number used in RMS-
Based Proxy model Phase 1 construction), with a total of 275 
samples for evaluation. Fig. 5 shows the predicted BHP values 
from the ANN-based Proxy model with 375 samples and the 
simulation results from MFM to check model performance. 
This ANN resulted in coefficients of determination of training 
dataset R² = 0.75 and of testing dataset R² = 0.71. The ANN 
was not representative, as shown in Fig. 5.

Fig. 4 Performance of the RSM-based Proxy in Phase 3 for BHP (kgf/cm²).

Fig. 5 Performance of the ANN-based Proxy with 375 samples for BHP (kgf/cm²).
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Figs. 6 and 7 show the predicted BHP values from the 
ANN-based Proxy model with 3,000 and 12,000 samples, 
respectively, and the simulation results from MFM to check 
model performance. Increasing evaluation dataset size 
to 750, 1,500, 3,000 (shown in Fig. 6), 6,000, and 12,000 

(shown in Fig. 7) samples (the total number of MFM models 
for production system evaluated in RMS-based Proxy model 
construction), obtained coefficients of determination of 
training dataset R² and testing dataset R² were above 0.96. 
The ANN was again not representative.

Fig. 6 Performance of the ANN-based Proxy with 3,000 samples for BHP (kgf/cm²).

Fig. 7 Performance of the ANN-based Proxy with 12,000 samples for BHP (kgf/cm²).

Proxy Model Selection
Regarding RMSE, RMS-Proxy models obtained 47.1 for 
Phase 1, 21.7 for Phase 2, and 6.5 for Phase 3. In addition, 
ANN-Proxy models obtained 64.4 for 375 samples, 33.6 for 
750 samples, 31.6 for 1,500 samples, 30.0 for 3,000 sam-
ples, 17.0 for 4,430 samples (5-inch diameter filtering), 26.4 
for 6,000 samples, and 26.1 for 12,000 samples. Regarding 
NRMSE, RMS-Proxy models obtained 0.40 for Phase 1, 
0.24 for Phase 2, and 0.07 for Phase 3. ANN-Proxy models 
obtained 0.54 for 375 samples, 0.29 for 750 samples, 0.27 
for 1,500 samples, 0.26 for 3,000 samples, 0.11 for 4,430 
samples (5-inch diameter filtering), and 0.22 for 6,000 and 
12,000 samples. Phase 3 of RMS-Proxy is the best forecast-
ing model.
As the number of MFM samples to obtain the ANN-Proxy 
model using GHMD was lower than that necessary to obtain 
the RSM-Based Proxy model, but the quality of results was 
inferior to acceptable, even with many MFM samples, the 
ANN-Based Proxy model was discarded for the continuation 
of this study. The RSM-Based Proxy model was selected.

Evaluation and comparison between Models by Produc-
tion Strategy
Evaluation and Comparison between the MFM and the Proxy 
Model through a Production Strategy

In the initial test, the similarity in the NPV value obtained 

by each model and the production behavior (oil production) 
was verified alongside the BHP of the wells of the models 
considered. The only considerable variation occurred with 
water production in the Proxy model, which was superior to 
that obtained in the MFM. Oil production was slightly higher 
than that obtained with the Proxy model. 
From the results in Phase 3 (proxy model represented by 
fixed, non-fixed variables and by the most impact variable - 
QL), the generated Proxy model satisfied the pre-established 
criteria (10%), meaning it was representative, and the 
comparison was made by the production strategy selected as 
the base case for both models. The validation parameter was 
the NPV, which produced a difference of 94 US$ million, or 
9%, over the Proxy model (US$ 1,191 million) relative to the 
MFM (1,097 US$ million). 

Evaluation Description in Stages of the Production 
Strategy
Two cycles (C1 and C2) were evaluated for MFM and Proxy 
model. Only the Proxy model evaluation is shown in this 
work. Figs. 8 and 9 show the results of evaluations of all 
stages of cycle 1 and 2 for the Proxy model, respectively. For 
E1C1 (Fig. 8), the NPV increased as the number of wells was 
raised (the highest NPV was 1,191 US$ million). The best 
result occurred with all wells in the field, that is, 12 producer 
and eight injector wells initially considered. 
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Fig. 8 Results of evaluations of all stages of cycle 1 for the Proxy 
model.

Fig. 9 Results of evaluations of all stages of cycle 2 for the Proxy 
model.

In E2C1, all wells had their coordinates changed, obtaining 
an NPV of US$ 2,070 million (74% higher than the previous 
stage). In E3C1, the financial return was roughly 3% higher 
than E2 (NPV of 2,125 US$ million). 
The configuration was selected with PC, FL, and IR 
diameters of 5", 8" and 8", respectively, and Qgi = 0 m³/day. 
In E4C1, the NPV was 2,222 US$ million (5% higher than 

Table 8 NPV results of the five stages of the MFM and Proxy model between Cycles 1 and 2.

Cycle Stage

MFM Proxy Model
US$ million
Lowest
Value

Highest
Value

D Lowest Value Highest Value D

1

E1 -5 1,191 1,196 -30 1,106 1,136
E2 1,075 2,070 995 773 1,946 1,173
E3 1,832 2,125 293 1,768 1,957 189
E4 2,125 2,222 141 2,048 2,073 25
E5 800 2,222 1,466 743 2,137 1,394

2

E1 64 2,222 2,158 71 2,137 2,066
E2 1,355 2,265 910 612 2,257 1,645
E3 2,163 2,265 102 2,114 2,257 143
E4 2,236 2,266 30 2,195 2,257 62
E5 810 2,266 1,456 774 2,257 1,483

E3) with a change in the platform coordinate (X=354,800 m 
and Y=7,512,300 m). In E5C1, there was no increase in NPV, 
maintaining the capacity of 85% as the best result obtained in 
the previous stage (E4). 
In Cycle 2 (C2) (Fig. 9) in E1, there was no increase in 
financial return relative to the higher value obtained in Cycle 
1 (same value as NPV of 2,222 US$ million). In E2C2, NPV 
increased to US $ 2,266 million (2% higher than E1). This 
increase is due to the reorganization of the positioning of the 
wells, which favored the increase in NPV with changes in 
pipe lengths, contributing to reduced investments. 
In E3C2, there was no increase in NPV. In E4C2, the increase 
was 0.03% with NPV of US$ 2,266 million compared to 
E3 (X = 354,900 m and Y = 7,512,700 m), and in E5C2, 
there was also no increase relative to E4, and the value was 
maintained.
In Cycle 2, the best result was very close to Cycle 1, indicating 
that the configuration obtained would have a value close to 
the optimum value of Cycle 1.

Comparison of Evaluation Stages and Production Behav-
ior of Optimized Models 
For the Proxy model, in Cycle 1, there was an increase in 
NPV of around 3%, maintaining the same diameters of the 
pipes as in the initial case (PC=5”, FL=8” and RI=8”) with 
only the Qgi changing from 100,000 m³/day to 0 m³/day 
(there is no need for artificial elevation). In Cycle 2, there 
was no change in NPV and the configuration, preserving 
what was obtained in Cycle 1. Part of these results occurred 
due to a partially optimized configuration with the same data 
used initially (diameters of PC, FL, and RI) and Qgi, only 
using the platform’s capacity that presented better results in 
the MFM (85%). 
Table 8 describes the result between the lowest and highest 
values obtained in the optimization stages of the production 
strategy and the difference between them through the NPV 
involving both cycles for the MFM and Proxy model. These 
results show the impact of each stage considering the max-
imum and minimum values obtained in each evaluation of 
each cycle and the difference between the extremes (D).
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For the MFM, the best response occurred without a producer 
well (Prod-12) of all those evaluated, and in the Proxy model, 
all wells were used. The coordinates resulting from the wells 
in each model were different. Figs. 10 and 11 show the final 
maps with the locations of the wells and platform position 
(Plat) for the MFM and Proxy models, respectively.
In the MFM, the optimized configuration had the following 
diameters and injection flow values: PC=5”, FL = 8”, RI=8”, 
and Qgi=200,000 m³/day. The diameters were the same in the 
optimized Proxy model, but the artificial lift method by gas 
lift (Qgi=0 m³/day) was unnecessary.
The resulting coordinates of the platform were different in 
both models (MFM with X=355,000 m and Y=7,512,350 m, 
and for the Proxy model, X=354,900 m and Y=7,512,700 
m). The analysis of the platform capacity confirmed the same 
value obtained by [29] for both models (85%). 
All stages had their importance, contributing to an increase 
in NPV and configuration changes. The results obtained in 
Cycle 1 had a greater impact, and in Cycle 2, with config-
urations closer to the optimal values, they had less impact. 

Both were important in the final result. There was no need 
for other cycles as the NPV reached the stopping criterion. 
Figs. 12 and 13 show the forecasting results for the optimized 
MFM and the Proxy model (Px) in both cycles, showing the 
behavior of oil (Qo) and water (Qw) flow rates in the field 
production, respectively. The behavior of injection water 
in the field is similar between the optimized MFM and the 
Proxy model.
The improvement in oil production in the field was simi-
lar for both models. The flow rate of water production was 
slightly higher in the Proxy model related to the MFM. 
Cross simulations were analyzed using data from the pro-
duction strategy related to the values of the input variables of 
the best result obtained in the Proxy model, inserted into the 
MFM (resulting in NPV of 2,171 US$ million). Because the 
MFM is a reference model (more detailed), the value of the 
cross-simulation with the data from the production strategy 
of the Proxy model in the MFM is 3.8% lower than the result 
of the MFM. The oil flow rate is slightly lower for the Proxy 
model inserted in the MFM, and the water flow rate is also 
much lower. This behavior affected the objective function.

Fig. 10 Final well and platform positioning for the MFM model.

Fig. 11 Final well and platform positioning for the Proxy model.

Fig. 12 Oil production flow rates (Qo) in the field after cycles of the 
MFM and Proxy model (Px).

Fig. 13 Flow rates of water production (Qw) in the field after cycles 
of the MFM and Proxy model (Px).
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Evaluation and Comparison between Computational 
Times between Models
Table 9 groups the average times obtained in a cycle for 
the Proxy model. The nomenclature for each stage of the 
production strategy evaluation, for a specific case, is TST, the 
total simulation average time for each stage; TSR, reservoir 
simulation average time for each stage; TSA, simulation time 
spent by the coupling; NSim, number of simulations; TST*, 
total simulation time. Ei is related to Stage i. Furthermore, 
each simulation in the assembly of the Proxy model took an 
average of 0.2 seconds.
The average simulation time of the production system (related 
to the Proxy model) for each stage is zero, and therefore, it 
is not placed in Table 7. The total optimization time of the 
integrated reservoir with the MFM model was 742 hours 
(with 1,514 integrated simulations). The integrated reservoir 
with the Proxy model was 518.6 hours (with two cycles plus 
0.6 hours to assemble the Proxy model). The decrease in total 
simulated time was approximately 30%.
Table 9 Average computational times for each stage, the sum for the 
complete evaluation of each stage, and the production strategy of a 
cycle for the Proxy model.
Stages TST (s) TSR (s) TSA (s) NSim TST* (h)
E1 1031 1011 34 46 14
E2 1210 1168 34 600 207
E3 1166 1149 35 12 4
E4 1200 1180 35 94 32
E5 1048 1029 35 5 2
Total 757 259

Discussion
In developing the Proxy model, the BHP behavior is a 
nonlinear function with complex behavior. This situation 
required going through the three stages of the development 
phase.
Concerning the Proxy model with a response surface, the 
behavior of BHP as a function of QL is very different between 
the evaluated models when the same wells are compared. The 
validation coefficient also reinforces this situation because it 
has a value below the adopted criterion. It thus shows that the 
Proxy model is not representative and does not reproduce a 
BHP profile similar to the reference model (MFM).
The applicability of the RSM-Based Proxy model was 
confirmed by the adopted criteria, which considers the 
adjustment of the model by the coefficient of determination 
(R² ≥ 0.99) and the validation (R² ≥ 0.95). In Phase 3, all 
requirements were satisfied for the various combinations 
evaluated, and the ranges of the impacting variables were 
analyzed. It allowed us to consider the set of response 
surfaces in the representative and possible Proxy model to be 
used instead of the MFM.
The residual, defined as the difference between the observed 
value and the estimated value of BHP, decreased from Phase 
1 (all variables combined) to Phase 2 (continuous variables 
separated from discrete variables), as shown in Figs. 2 and 
3. Moreover, variable separation enhanced the results for the 
RSM-Proxy model but increased its complexity with more 
response surfaces. From Phase 2 to Phase 3 (splitting ranges 
for the most important variable), the obtained lowest residual 

was adequate. The splitting evaluation introduced more 
complexity to the RSM-Based Proxy model development.
Concerning the ANN-Based Proxy model, the structured 
MATLAB implementation of GMDH could be used more 
easily to perform Proxy modeling than the RSM-Based 
Proxy model structure. It proved to be a promising technique. 
GMDH was useful for time-series prediction, which can 
be assumed as a special case of nonlinear regression and 
function approximation [26].
Using the GMDH network to find the production curve 
for each well over time, re-training the ANN after human 
interventions seems ideal. However, our Proxy modeling tried 
to represent the overall behavior of the production system 
along with field exploitation. The ANN-Based Proxy could 
not fit the quality check imposed for both Proxy models, even 
when the number of layers and neurons per layer of Proxy 
model was increased. The results showed that the number of 
MFM samples needed to obtain the adequate GHMD might 
be greater than that necessary to obtain the RSM-Based 
Proxy model for an acceptable Proxy model for integration.
The residual for the ANN-Based Proxy model decreased 
with increasingse in dataset size from 375 to 12,000 samples 
but converged for an intermediary value (Figs. 5, 6, and 7). 
Even filtering the original dataset to include only 5-inch 
diameter samples, the GMDH network could not enhance the 
ANN-Proxy model quality to fit Phase 3 of the RSM-Proxy 
model. Changing ANN parameters also did not contribute to 
improving the model.
In [16], the author commented that Proxy modeling 
techniques strongly depended on the model's complexity, 
design space dimension, and input dataset quality. But, with 
the further increase in the non-linearity of a simulation model 
response, some Proxy models have outperformed others. The 
choice of the Proxy model type should be problem-specific. 
In our case, further study is needed to improve the utilization 
of the ANN-Based Proxy model for production systems with 
reservoir-integrated simulations.
In the initial test before the optimization of the production 
strategy, the NPV observed between the models was within 
the established criteria (maximum difference of 10%), which 
enabled the evaluation of the Proxy model in the study. 
This first analysis served as a basis to verify the possible 
applicability of the Proxy model, which was confirmed in an 
optimization of the production strategy, and then compare it 
with the reference model MFM, where the similarity between 
the results, both in the financial return and in the production 
behavior was verified.
Pipe sizing and the insertion of injection gas for the artificial 
lift method gas lift are important for optimizing the gathering 
system regarding production and financial return, mainly 
with little system information, low availability of materials, 
and system undersized [4]. According to the observed results, 
optimizing well placement was the most crucial stage of the 
process.
Regarding computational time, the Proxy model showed 
a decrease of around 30%, which is significant datum for 
evaluations with many variables and stages of a production 
strategy that normally require long simulation times. It is 
important to note that the integration methodology be used 
in optimization of the MFM already presented a significant 
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reduction of time compared to the direct integration between 
reservoirs and production systems [17].
The use of more robust models compromises the 
computational time for the simulations. In this way, the Proxy 
model can replace complex models when they do not alter 
the integrity of the results relative to the reference model. 
Furthermore, developing the Proxy model for the production 
system satisfied the requirements adopted (determination 
and validity coefficients). Its application integrated into 
the reservoir model presents results close to the reference 
case (based on MFM) when different values of the model 
components are inserted and simulated. 
What is important when constructing the Proxy model to 
replace the MFM is that it can present a financial return and 
the production behavior related to MFM that only poses a 
slight difference or with an acceptable value, depending on 
the desired conditions of the analyzed problem (through 
pre-established criteria). In addition, the reduced model 
should help reduce computational time and make the studies 
feasible. For this, the development of the Proxy model 
must be rigorous and representative, seeking to evaluate the 
variables that have the greatest influence on a response in 
the production system that is used to construct the response 
surfaces. Thus, more reliable models can be developed and 
used in developing oil field production and decision-making. 

Conclusions
The results indicate that Proxy models can be an alternative 
to represent multiphase flow behavior for wells and gathering 
systems, including their geometrical parameters, because 
they presented results similar to those of the MFM (medium 
fidelity model) currently used. The financial return and fluid 
production behavior obtained from integrated simulation 
applied in an intensive production strategy optimization 
process present little difference (4%), showing that the 
Proxy model evaluated has good applicability. In addition, 
there was a reduction of roughly 30% in computational time 
for an integrated RSM-based Proxy model, compared to an 
integration methodology with MFM, which already shows 
time savings compared to an explicit direct integration. 
The RSM-Proxy model obtained the best values of 
coefficient of determination (R² = 1) and root-mean-square 
error (RMSE = 6.5) than the ANN-Based Proxy model 
(0.95 and 26.1, respectively). RSM-Proxy model demanded 
variable separation and variable range splitting, increasing its 
complexity. Further studies on ANN-Based Proxy modeling 
are needed since they could not represent the production 
system response inside the validation criteria, even when 
increasing dataset size or changing ANN parameters.
The production behavior related to the production of oil and 
water in both the field and the wells also showed similar 
results, such as in the injection of water in the injection 
wells. The same was observed with the BHP of producer and 
injector wells. 
The application of the Proxy model integrated into the 
reservoir model promoted an improvement in the financial 
return along evaluation stages and a similar production 
behavior relative to the MFM in all stages of the adopted 
production strategy.
The promising results also indicate that applying Proxy 

models for integration can be evaluated for other scenarios 
in other fields. Ultimately, a Proxy model, which represents 
the production system, could be integrated into the reservoir 
and favor faster analysis, dynamizing production strategies, 
and decision-making.

Nomenclature
ANN: artificial neural network
BHP: bottom-hole pressure, [kgf/cm²]
BHPinj: bottom-hole pressures of the injection, [kgf/cm²]
BSW: basic sedimentary and water [%]
C: the cycle of production strategy
Cio: Injected water processing capacity, [1000.0 m³/day]
Cpo: oil processing capacity, [1000.0 m³/day]
Cpw: water processing capacity, [1000.0 m³/day]
E: stage of production strategy
FL: flowline length, [in] or flowline
GMDM: group method of data handling
GOR: gas-oil ratio, [m³/m³]
i: tax rate
Inj: injector well
Invplat: The platform investment, [US$ millions]
j: period
ID: internal pipe diameters, [in]
IDLHC: terative discrete latin hypercube
MFM: medium fidelity model
N: number of samples
nd: linear term
Nt: total number of periods
nw: number of wells
NCF: net cash flow
NCFj: net cash at a specific time j
Np: accumulated production of oil, [m³]
NPV: net present value, [US$ millions]
NRMSE: normalized root-mean-square error
NW: the number of wells
PC: production column length, [m] or production column
PI: productivity index [(m³/day)/(kgf/cm²)-1]
Pj: wellhead pressure, [kgf/cm²]
Prod: producer well
Px: Proxy model
Qgi: gas lift flow rate, [m³/day]
QL: liquid flow rate, [m³/day]
RI: riser length, [in] or riser
RMSE: root-mean-square error
RS: response surface
RSM: response surface methodology
S: simulations
tj: period considered
WHP: well head pressure, [kgf/cm²]
Wi: accumulated injection water, [m³]
Wp: accumulated production of water, [m³]
x: input variable of polynomial
y: output variable of polynomial
β: term of regression
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