
Abstract
As carbon dioxide emissions rise worldwide, the world is still experiencing many consequences of these emissions. 
This challenge can be addressed using carbon capture, utilization, and storage (CCUS). Energy transfer generally re-
quires a good program in which CCUS plays a crucial role. CO2-EOR, which allows for storing carbon dioxide (CO2), 
is a suitable option in this area. It provides economic returns from oil that could not be recovered before without this 
method and has environmental benefits, which shows its importance compared to other EOR methods. In this study, 
an oil reservoir is simulated using field data to compare this method with the water injection method and natural 
depletion method of the reservoir. Water and CO2 injection increased oil recovery by 8.4% and 12.7%, compared to 
natural depletion. The surrogate reservoir model was built using the machine learning (ML) technique by choosing 
the scenario of CO2 injection to reduce the computational load and the possibility of using it in optimization tasks. 
Therefore, using the data-driven model, we can reproduce the data related to the CO2-EOR process in a much shorter 
period of time, thereby allowing us to select the most efficient parameters and their ranges for different processes. The 
numerical simulator was run 250 times to extract the necessary data. The ANN is applied to the data and trained after 
the database is built and the hyper-parameters have been optimized. ANN consists of two hidden layers with 81 and 
51 neurons, respectively, and a 0.05 learning rate after optimization. The trained two-objective ANN was a MAPE of 
less than 2.5% in the test data for both objectives, i.e., oil recovery and carbon dioxide storage. To further validate and 
ensure the accuracy of the trained ANN, the numerical simulator was run randomly ten times and compared with the 
values predicted by the ANN. MAPE for both objectives was less than 2.6%. Therefore, the ANN that makes predic-
tions in a fraction of a second has a suitable accuracy that can be used as a surrogate reservoir model.
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Introduction
The global economy and central elements of modern 
society already depend on fossil fuels for their energy, 
and any sudden change in the composition of these fuels 
could have serious consequences. The issue of climate 
change, however, has become one of the most pressing 
challenges in the world, and various studies are being 
conducted across many fields concerning it. Climate 
change is not only a problem of the future but a problem 
of the present. The issue of global warming is critical 
because increased CO2 and other greenhouse gases have 
caused rising sea levels and climate change [1-4]. In 2019, 
greenhouse gas emissions were 59 GtCO2eq, an increase 
in twelve percent over 2010 and fifty-four percent over 
1990 [5]. CO2 gas is the most significant greenhouse 

gas. According to a new International Energy Agency 
(IEA) analysis, energy-related carbon dioxide emissions 
increased by 6%, reaching 36.3 billion tons in 2021. It 
is the highest level ever because the global economy 
has recovered strongly since the Covid-19 crisis and has 
relied heavily on coal to fuel this growth [6]. One option 
to address this challenge is CCUS, which enhances oil 
recovery by injecting carbon dioxide gas (also known as 
CO2-EOR), one of the best options for storing CO2 [7]. 
Energy transfer generally requires a good program in 
which CCUS plays a crucial role. CCUS is the only 
technology of sufficient scale to reduce greenhouse gas 
emissions from coal- and gas-fired power generation and 
the only technology through which industries like steel, 
cement, and petrochemicals can become carbon-free [8]. 
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Therefore, storing CO2 gas in underground formations plays 
a significant role. Many techniques are used for enhanced oil 
recovery (EOR), including gas injection, chemical injection, 
microbial injection, or thermal recovery [9,10]. As a result 
of the frontal-advance theory, researchers explained how 
chemicals move during oil displacement during chemical 
injection EOR. Based on the results, continuous injection of 
chemicals (for example, polymers, surfactants, or miscible 
solvents) is not an economically feasible option due to its 
high cost [10]. The use of captured CO2 for EOR dates back 
to the origins of the EOR industry in the early 1970s with 
captured CO2 from natural gas production [11]. EOR can 
store large amounts of CO2 geologically; however, many 
have evaluated its ability to reduce greenhouse gas emissions 
[11-13].
From successful CO2-EOR and geological storage projects 
worldwide, it has been confirmed that CO2-EOR is suitable 
for a wide range of reservoirs. Apart from providing an 
economic return on oil that previously couldn’t be produced, 
it can also be used to store the gas that causes climate 
change. As a result of CO2-EOR, some CO2 remains in the 
reservoir, which is classified as CO2 storage. Combined 
with CO2 gas, oil in a CO2-EOR project has high mobility, 
which means CO2 injection into oil reservoirs has the 
potential to increase oil production significantly [14]. The 
CO2-EOR process is considered the largest EOR process in 
the world after the thermal EOR process used in heavy oil 
fields [15]. Gas injection into oil reservoirs can be done in 
two ways: miscible and non-miscible injection, which can be 
distinguished by the minimum miscibility pressure (MMP) 
[16]. When CO2 is injected into oil, it can swell the oil, 
reduce its viscosity, reduce interfacial tension, and usually 
have a higher recovery [17,18]. Even though CO2 injection 
is primarily used in EOR, it also has the advantage of storing 
CO2, which reduces global warming. Therefore, in addition 
to the injection of CO2 during CO2-EOR, much attention is 
given to investigating the long-term use of CO2-EOR as a 
storage application for anthropogenic CO2. One of the major 
projects launched is the Weyburn CO2-EOR project using 
anthropogenic CO2 in Canada, successfully using the CO2-
EOR technique to store large amounts of anthropogenic CO2 
safely. The project began CO2 injection in October 2000 and 
it has been continued to produce oil from the Weyburn and 
Midale fields at a rate of 14,000 barrels of oil per day [19, 
20]. 
One of the main advantages of CO2 in comparison with other 
types of gases that are used to increase oil recoveries, such as 
methane and nitrogen, is the significantly low MMP. 
Consequently, CO2 can be used to improve miscible oil recovery 
in various oil reservoirs [21]. According to the studies, it was 
found that the highest oil recovery in the miscible gas injection 
is achieved by optimizing the gas composition with the lowest 
MMP and the lowest density [22].
The researchers explained the CO2 mixing process using the 
transition zone between the injection and production wells. 
Their theory states that mass transfer between oil and CO2 
creates a completely miscible zone without any interfaces, 
followed by a transition zone, which is miscible with oil 
at the front and CO2 at the back [23]. However, some 
problems occur during the process with miscible flooding. 

One of them is the asphaltene deposit, which, even in small 
amounts, may block fluid flow and significantly reduce 
movement [24]. The effect of CO2-water-rock interaction on 
the change of rock permeability and final oil recovery was 
evaluated experimentally during the injection of CO2 into 
carbonate rock. The results showed that the damage severity 
is directly related to the injection rate. Still, the change in 
the displacement type from miscible to immiscible reduces 
the intensity of chemical reactions in the porous medium 
[25]. Researchers have developed precise relationships for 
CO2 solubility in oil and the corresponding oil swelling and 
viscosity using genetic algorithm techniques. Their results 
have been validated using published experimental data 
[26,27]. Understanding the underlying processes behind 
CO2-EOR is crucial for successful field applications. In 
addition to maintaining or increasing reservoir pressure, 
which provides an artificial drive for oil production, CO2 
injection is the reason for other effects that increase oil 
recovery. Oil viscosity reduction, oil swelling, oil and water 
density reduction, and oil vaporization and extraction are the 
four main CO2-EOR processes [15, 28]. CO2 is highly soluble 
in oil hydrocarbons, so it causes the oil to swell and reduce 
its density and viscosity. Furthermore, since there is some 
water in the oil reservoir, the injection of CO2 also reduces its 
density, making water and oil density similar and, therefore, 
reducing the gravity segregation effect [29]. There has been 
extensive development of machine learning models to proxy 
numerical models with high accuracy by using regression 
[30, 31], artificial neural networks (ANNs) [32, 33], and 
support vector machines [34].
To predict asphaltene precipitation in reservoirs under certain 
conditions, an ANN has been generated with a coefficient of 
determination (R2) larger than 0.996 [35]. Also, an ANN-
based proxy model was developed to evaluate the performance 
of the CO2-EOR project and CO2 storage capacity. The 
objectives of this study were oil recovery, CO2 storage, and 
net present value. The ANN model shows high adaptability 
to CO2-WAG projects’ complex data structures. Furthermore, 
an ANN model was utilized in the proposed workflow to aid 
in optimization [36]. To analyze the uncertainty of the CO2 
storage project, a surrogate reservoir model was created 
using artificial intelligence. A surrogate reservoir model 
was utilized to predict the pressure and distribution of CO2 
throughout the reservoir with reasonable accuracy in seconds 
[37]. Surrogate models run in a fraction of a second, while 
numerical models run in minutes to hours, depending on their 
size. Therefore, using ML algorithms can reduce simulator 
load and computational time. 
This article presents a study of the CO2-EOR process and 
numerical modeling with field data and different scenarios. 
As a result, a commercial simulator is used to model natural 
depletion, water injection, and CO2-EOR scenarios to 
determine which scenario leads to the highest oil recovery. 
Additionally, CO2 gas injection could be used to take 
advantage of the environmental benefits. In fact, by choosing 
the desired scenario, the maximum production of oil in the 
existing conditions and the maximum amount of CO2 that 
can be stored is provided, which can play a significant role in 
climate change. By choosing the type of scenario with more
oil recovery and using the data-driven model, the data related
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to the CO2-EOR process is reproduced in a much shorter 
period of time, which helps us choose the best parameters 
involved in the CO2-EOR process. In this study, two-
objective ANN is used. Several objectives are defined for 
training the ANN, including oil recovery and carbon dioxide 
storage, which can reduce the computational load on the 
numerical simulation model by using the trained ANN to 
reproduce these objectives. Therefore, it can be beneficial 
during optimal studies and becomes increasingly important. 
Eventually, the ANN is evaluated on its ability to predict the 
percentage of oil recovery and carbon dioxide gas storage. 
Field data were used in this study to assess the surrogate 
model’s performance under these conditions. Comparing the 
scenarios allows first selecting the desired scenario and then 
building a surrogate model for prediction in less time than 
the numerical model using the framework presented in this 
article. It can be used and generalized, and other models with 
more complex scenarios can be implemented.

Materials and Methods
In the first step, the reservoir containing oil for EOR is 
simulated based on field data used in this study. By setting the 
same constraints for all the scenarios considered, the numerical 
simulator is run for 15 years. This study investigated three 
scenarios of natural depletion, water injection, and carbon 
dioxide gas injection. The scenario more suitable for oil recovery 
(CO2 injection also brings environmental benefits) is selected. 
A surrogate reservoir model is built using ML techniques by 
selecting the desired scenario. First, data extraction and database 
creation are required to construct an accurate surrogate reservoir 
model. For this purpose, 250 simulations are run, and data 
are extracted. ANNs inputs include CO2 gas injection rate, oil 
production rate, production bottom-hole pressure limitation, and 

Fig. 1 The main workflow of this study.

injection bottom-hole pressure limitation, and ANNs outputs 
include oil recovery and CO2 storage. The hyperparameters of 
the two-objective ANN are optimized using the tuner package 
in the Python environment, and finally, the ANN is applied to 
the database. After training the ANN, we evaluated it using test 
data. To ensure its performance, the numerical simulator ran 
randomly ten times and re-evaluated the trained ANN using that 
data. Then, the error values provide the possibility to ensure the 
correctness of the prediction capability of the ANN. Figure 1 
briefly depicts the workflow chart of the research work.

Reservoir Model
Using a commercial simulator, we can determine how much 
oil will be produced and how much CO2 will be stored. To 
build a reservoir model in a commercial simulator, field data 
(fluid properties and rock properties) were used in studies 
to simulate the CO2-EOR process [38-40]. The oil reservoir 
simulation model has dimensions of 81*58*20 with a total 
number of 93960 cells. The overall dimensions of the reservoir 
are also 8*5.7*0.16 km. The existing reservoir is located at 
a depth of 2800 to 3300 meters with an average pressure of 
324 bar, and the reservoir temperature is equal to 140 degrees 
Celsius. The reservoir model has heterogeneous porosity and 
permeability. Figure 2 shows the porosity distribution, and 
Figure 3 shows the reservoir permeability distribution and 
the location of the wells. The petrophysical properties of the 
reservoir model are given in Table 1. In addition, the MMP 
which was performed in the compositional simulator is equal 
to 145 bar, and the volume of oil in place of the reservoir 
is 138.4 million Sm3. Table 2 shows the properties related to 
components in compositional simulation. The values attributed 
to the C7+ fraction represent the average weight for components 
larger than C7.

Fig. 2 Porosity distribution.
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Table 1 Summary of petrophysical properties of the reservoir model
Petrophysical Properties 

Value (Unit)Parameter
13.6 (fraction)Average porosity
132.5 (md)Average permeability
5.4E-5 (1/bar)Rock Compressibility
0.76NTG

Table 2 Molar percentages and critical properties of the components.
Component Molar % Mol. weight Critical pressure(bar) Critical temperature (oC)

CO2 9.9 44 119.1 -22.2
C1 26.6 16 74.2 -116.2
C2 6.5 30 78.4 -24
C3 5.2 44 68.8 31.3
C4-6 6.7 70.2 56.8 107.4
C7+ 54.1 218 27.5 340.2

In this model, four oil production wells (PROD1 to PROD4) and 
three CO2 gas injection wells (INJ1 to INJ3) are considered, and 
their locations are also shown in Figure 4. Well locations will 
remain unchanged in all reservoir model scenarios. The minimum 
oil production rate and maximum water cut in the production 
wells are 100 Sm3/day and 35%, respectively. Also, the other 
considered limitations are shown in Table 3, which will be true for 
all the examined scenarios. This study examines how the reservoir 
performs in three scenarios: natural depletion, water injection, 
and production with continuous carbon dioxide gas injection. 
In all scenarios, the maximum oil production rate from four oil 
production wells equals 9000 Sm3/day.

Table 3 Operating constraints oil reservoir simulation.
Operating Constraints
Parameters Values (Unit)
Max Injector BHP 450 (bar)
Min Producer BHP 82.7 (bar)
Producer Oil Target Rate (minimum) 100 (Sm3/day)
Max Water cut 35 (%)
End of Simulation 15th (years)

Results and Discussion

Natural Depletion
At first, the natural depletion scenario of the reservoir was 
investigated in the reservoir model for 15 years. As a result, the 

bottom-hole pressure of the production wells is set lower than 
the average reservoir pressure, which leads to oil production 
naturally until reaching the existing limits. The performance 
results of this scenario are shown in Figure 4. The daily oil 
production rate of the reservoir, in natural depletion, was 
initially 9000 Sm3/day, but it reached 2227 Sm3/day after 15 
years of simulation, which goes beyond the economic limits. 
At the end of the simulation period, the pressure level reached 
152.4 bar, and the pressure drop in the reservoir was 171.6 bar 
in these 15 years. This pressure drop in the reservoir can lead 
to the waste of a large amount of oil inside the reservoir. In this 
scenario, the cumulative oil production was 27.7 million Sm3, 
and the oil recovery factor was calculated as 17.8%. Figure 4 
also shows the status of oil and gas production rates.

Fig. 4 Reservoir performance and the amount of oil and gas production in natural depletion scenario.

Fig. 3 Well placement and Permeability distribution.
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As mentioned, the initial reservoir pressure is 324 bar, so 
oil production is able to reach the desired oil rate, and it is 
maintained for less than 1 year. Gas production also decreases 
a bit due to reaching the limits of the well bottom pressure 
of a production well. Then, with more oil production, gas 
production increases and peaks in the first 7 years. As 
more oil and gas are produced, reservoir pressure begins to 
decrease. Production will drop drastically when the reservoir 
pressure gets closer to the minimum bottom-hole pressure. 
Subsequently, oil and gas production will decrease and even 

Table 4 The performance results of the water injection scenario.
Field pressure at the end of injection (bar)Oil recovery (%)Cumulative oil production (million Sm3)Field injection rate (ksm3/day)Index

22824.736.821

255.926.23832

255.726.24383.53

stop because the reservoir will not have enough pressure 
support to produce more oil under natural depletion.

Water Injection
In this case, all the conditions of the previous scenario are 
established. Furthermore, water injection takes place in three 
injection wells, with injection rates of 2000, 3000, and 3500 
Sm3/day during 15 years of simulation, so its results can 
be evaluated. Table 4 shows the performance results of the 
reservoir in this scenario.

As a result of injecting water in this scenario, the pressure 
drop is compensated and works better than in the natural 
depletion scenario. However, increasing the injection rate by 
more than 3 million sm3/day and due to the injection well 
pressure limitation, injections are not possible over this rate. 
Therefore, oil recovery will not increase significantly by 
increasing the injection rate. Thus, the amount of oil recovery 
is 26.2% in this scenario.

Table 5 The performance results of the CO2 injection scenario.

Index Field injection rate (million Sm3/day)
Cumulative oil production (million 
Sm3)

Oil recovery (%)
CO2 storage (million 
KG-M)

Field pressure at the 
end of injection (bar)

1 1.7 37.1 25.4 340.8 239.7

2 2.5 39.8 28.2 512.7 282.7

3 3.4 42.1 30.4 680.1 323

4 4.3 42.6 30.5 775 349

Continuous CO2 Injection
Due to the problem of high-pressure drop in the field and 
low recovery, CO2 is injected into the reservoir to take 
advantage of its environmental benefits in addition to 
maintaining the pressure of the reservoir and producing 
more oil. To investigate the effect of injection rates on the 
reservoir behavior in the continuous injection scenario, CO2 
gas is injected into the reservoir at different rates. According 
to Table 5, the reservoir performance with different injection 
rates was investigated and reported in this scenario.

According to the table above, the best scenario is related 
to the injection of CO2 at a rate of 4.3 million Sm3/day. 
Figure 5 shows the results of the reservoir performance in 
this scenario. Based on the simulation results related to the 
scenario with an injection rate of 4.3 million Sm3/day, the 
cumulative oil production at the end of the simulation period 
was 42.6 million Sm3 with a recovery factor equal to 30.5%. 
Also, the amount of CO2 storage in this scenario equals 775 
million KG-M. By injecting CO2 gas in this scenario, the 
pressure drop is compensated and works much better than 
natural depletion. However, by increasing the injection rate to 
more than 4.3 million Sm3/day and considering the injection 
well pressure limitation, the amount of injection will not 
be able to be increased. Thus, oil recovery by increasing 
the injection rate more than this amount will not increase 
significantly. Most CO2-EOR projects, at different project 
stages, are conducted in the USA and China, followed by 
Canada, Brazil, Saudi Arabia, and the United Arab Emirates 
[41]. As a result of CO2 injection in the Ivanic field between 
2014 and 2019, recovery has increased by 35% [42], and in 
some other projects by 22% and more [43]. Continuous CO2 
injection can substantially increase oil production and CO2 
storage [44].

Machine Learning Implementation
As shown in Figure 6, CO2 injection has a higher percentage of oil 
recovery than natural depletion and water injection. Therefore, 
considering the environmental benefits of CO2 injection and the 
higher oil recovery amount in this scenario, the CO2 injection 
method is used in the ML model, which in addition to higher oil 
recovery, provides us with the possibility of CO2 storage. In fact, 
by using the existing data, the model can be built with higher 
accuracy and speed. After the numerical simulation, the data 
needed to build the database is extracted from the numerical 
simulator. The percentage of oil recovery and the amount of CO2 
storage are the two objectives of this section, and ML model and 
ANN algorithm are used to predict these values. According to 
the values and their ranges in Table 6, the numerical simulator 
is produced and injected in 8 years to extract the necessary 
data for ANN training. The numerical simulator is run 250 
times to extract the required data. According to the objectives, 
the database will be built based on the extracted data. 85% of 
the data is used for training, and 15% is used to evaluate the 
performance of the ANN. Data extraction parameters and their 
non-linear relationship are demonstrated in a heat map (as seen 
in Figure 7). A heat map displays the independence of the input 
parameters, which it ensures that parameters with the same 
information will not interfere. 
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Fig. 5 The performance results of the reservoir with an injection rate of 4.3 million Sm3/day.

Fig. 6 Comparison of field oil efficiency of existing scenarios.

Fig. 7 Input parameter heat map diagram (BHP-IL: bottom-hole pressure of injection well limitation, BHP-PL: bottom-hole pressure of 
production well limitation, FGIR: field gas injection rate, FOPR: field oil production rate).

Table 6 ANN input parameters and their operational ranges to build the model.
Parameters Unit Range
Gas injection rate million Sm3/day [1-5]
Oil production rate Sm3/day [9000-12000]
Production BHP limitation Barsa [55-110]
Injection BHP limitation Barsa [350-550]
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In Figure 8, in addition to the ANN architecture, the inputs of 
the ANN include the CO2 injection rate, oil production rate, 
production bottom-hole pressure limitation, and injection 
bottom-hole pressure limitation, as well as its output, 
including the percentage of oil recovery and the amount of 
carbon dioxide gas storage.
ANN architecture describes the pattern of connections 
between neurons. This study has three parts in the ANN: 

an input layer, an output layer, and hidden layers. The 
consideration interval in the tuner package in the Python 
environment to optimize the hyper-parameters in this study 
is shown in Table 7. After evaluating the hyper-parameters, 
two hidden layers are selected, and the number of neurons in 
the first and second hidden layers is 81 and 51, respectively. 
Also, the learning rate was determined to be 0.05.

Fig. 8 Architecture of the proposed ANN model and ANN inputs and outputs.

Table 7 Hyperparameters space used for ANN training.

Hyperparameters Range
Number of hidden layers [1-3]
Numbers of neurons [1-100]
Learning rate [0.01-0.08]

As a next step, the ANN is trained using the data extracted from 
the database, which is used to ensure the proper training of the 
ANN from the mean square error (MSE) of the data during 
training. The ANN is trained, and the MSE of the data during 
training is shown in Figure 9. It can be seen that the MSE 
decreased with the increase in the number of epochs and became 
close to zero, which it indicates the proper training of the ANN.

Fig. 9 Mean square error during training and validation of the ANN.

By training the ANN, the trained model is applied to the 
test data to validate the ANN. According to the test data, in 
Figure 10 (blue dots) and Figure 11 (blue dots) the values 
predicted by the ANN for the existing purposes, i.e., carbon 
dioxide storage and oil recovery, are shown respectively. The 
predicted values are close to their actual values, confirmed 
by the R2 values . To verify the trained model's accuracy, the 
values of root mean square error (RMSE) and mean absolute 
percentage error (MAPE) in the test data set are also checked, 
as shown in Table 8.

Fig. 10 Predicted Values by ANN versus actual values of CO2 stor-
age (million KG-M). blue dots: test data and red dots: blind data.
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Fig. 11 Predicted Values by ANN versus actual values of oil recovery 
(%). blue dots: test data and red dots: blind data.

Table 8 Evaluation of RMSE, MAPE and R2 in the two-objective 
ANN testing data.
Evaluation Oil Recovery (%) CO2 Storage (Million KG-M)
MAPE 2.37 2.43
RMSE 0.55 6.85
R2 0.88 0.99

To ensure the predictive capability of the trained ANN, 10 
times simulations were run with random values. Then the 
values predicted by the trained ANN were compared with 
the actual values obtained from the numerical simulator, 
and the performance results of the trained ANN on these 
blind data (The data on which the trained ANN has not been 
previously observed or applied.) are shown in Figure 10 (red 
dots) and Figure 11 (red dots). The trained ANN in the test 
data is able to predict the target values with less than 2.5% 
error and in the blind data with less than 2.6% error, which 
a summary of the evaluation criteria of trained two-objective 
ANN is shown in Figure 12. In this way, ANN can predict 
target values in a shorter period and with sufficient accuracy 
in the CO2-EOR scenario and reduces the computation load 
involved in predicting target values. Field data were used 
to investigate the possibility of building an ANN model in 
an oil reservoir, and the objectives of the study, namely, oil 
recovery and carbon dioxide storage, are important in the oil 
industry, and they can be used for optimization studies. In 
addition to reproducing the desired data in a fraction of a 
second, the trained ANN model can also be integrated and 
coupled for other purposes, such as optimization. Therefore, 
with the high-speed capability of ML technique, oil recovery, 
and carbon dioxide storage can be calculated with reasonable 
accuracy and high speed.

Fig. 12 Evaluation of trained ANN on two existing targets. F1: percentage of oil recovery and F2: CO2 storage.

Conclusions
In this study, different scenarios for oil production were 
compared and then a scenario was selected that allowed us to 
take advantage of the environmental effects while producing 
more oil. The following results were obtained from this study.
- The oil reservoir simulation was done with field data to 
investigate various scenarios and extract data for ANN 
training. Three scenarios of natural depletion, water injection, 
and continuous CO2 injection were investigated, and oil 
recovery was 8.4% higher in water injection and 12.7% 
higher in CO2 injection than in natural depletion. As well as 
providing better oil recovery, CO2 injection can also benefit 
the environment by storing CO2 gas, making the use of this 
method even more appealing.
- The surrogate reservoir model was built using ML 

technique by choosing the scenario of CO2 injection to 
reduce the computational load and the possibility of using it 
in optimization tasks.
- To train ANN, the numerical simulator was run 250 times to 
extract the necessary data. As a result, the trained two-objec-
tive ANN was a MAPE of less than 2.5% in the test data for 
both objectives, i.e., oil recovery and carbon dioxide storage.
- To further validate and ensure the accuracy of the perfor-
mance of the two-objective ANN, the numerical simulator 
was run randomly 10 times and compared with the values 
predicted by the ANN. According to the results, MAPE for 
both existing objectives was less than 2.6%. Therefore, the 
ANN that makes predictions in a fraction of a second has a 
suitable accuracy that can be used as a surrogate reservoir 
model.



B. Yazdani et al. Journal of Petroleum Science and Technology 12(3): 30, 2023, Pages 2-1110

References
1. Ranathunga A S, Perera M S A, Ranjith P G (2014) Deep 

coal seams as a greener energy source: a review, Journal 
of Geophysics and Engineering, 11, 6: 063001, https://
doi.org/10.1088/1742-2132/11/6/063001.

2. Perera M S A, Ranjith P G (2012) Carbon dioxide seques-
tration effects on coal's hydro‐mechanical properties: a 
review, International Journal of Energy Research, 36, 
10: 1015-1031, https://doi.org/10.1002/er.2921.

3. Perera M S A, Ranjith P G, Choi S K, Bouazza A, Kodi-
kara J, Airey D (2011) A review of coal properties perti-
nent to carbon dioxide sequestration in coal seams: with 
special reference to Victorian brown coals, Environ-
mental Earth Sciences, 64: 223-235, doi.org/10.1007/
s12665-010-0841-7.

4. Schrag D P (2007) Preparing to capture carbon, Sci-
ence, 315, 5813: 812-813 812-813, DOI: 10.1126/sci-
ence.1137632.

5. Change I C (2007) Mitigation of climate change—sum-
mary for policymakers. working group iii contributions 
to the intergovernmental panel on climate change, Bang-
kok, Thailand.

6. Agency I E (2021) Global energy review: CO2 emissions 
in 2021 Global emissions rebound sharply to highest 
ever level, International Energy Agency, https://iea.blob.
core.windows.net/assets/c3086240-732b-4f6a-89d7-db-
01be018f5e.

7. Ettehadtavakkol A, Lake L W, Bryant S L (2014) CO2-
EOR and storage design optimization, International 
Journal of Greenhouse Gas Control, 25: 79-92, doi.
org/10.1016/j.ijggc.2014.04.006.

8. Bui M, Adjiman C S, Bardow A, Anthony E J, Boston 
A, Brown S, Fennell P S, Fuss S, Galindo A, Hack-
ett L A (2018) Carbon capture and storage (CCS): the 
way forward, Energy and Environmental Science, 11, 
5: 1062-1176. 11, 1062–1176. https://doi.org/10.1039/
C7EE02342A.

9. Lake L, Johns R T, Rossen W R, Pope G A (2014) Fun-
damentals of enhanced oil recovery, Society of Petro-
leum Engineer, https://doi.org/10.2118/9781613993286.

10. Green D W, Willhite G P (2018) Enhanced oil recovery, 
Society of Petroleum Engineers, https://doi.org/https://
doi.org/10.2118/9781613994948.

11. Marston P M (2017) Incidentally speaking: a systematic 
assessment and comparison of incidental storage of CO2 
during EOR with other near-term storage options, Ener-
gy Procedia, 114: 7422-7430, https://doi.org/https://doi.
org/10.1016/j.egypro.2017.03.1872.

12. Cooney G, Littlefield J, Marriott J, Skone T J (2015) 
Evaluating the climate benefits of CO2-enhanced oil 
recovery using life cycle analysis, Environmental sci-
ence and technology, 49, 12: 7491-7500, https://doi.org/
https://doi.org/10.1021/acs.est.5b00700.

13. Jaramillo P, Griffin W M, McCoy S T (2009) Life cy-
cle inventory of CO2 in an enhanced oil recovery sys-
tem, 8027-8032,https://doi.org/https://doi.org/10.1021/
es902006h.

14. Holm, L. W. (1986) Miscibility and miscible displace-
ment. Journal of Petroleum Technology, 38, 08: 817-
818, https://doi.org/10.2118/15794-PA.

15. Kulkarni M M (2003) Immiscible and miscible gas-oil 
displacements in porous media, Louisiana State Univer-
sity and Agricultural and Mechanical College, https://
doi.org/10.31390/gradschool_theses, 259.

16. Martin D F, Taber J J (1992) Carbon dioxide flooding, 
Journal of Petroleum Technology, 44, 04: 396-400, 
https://doi.org/10.2118/23564-PA.

17. Liya Z, Jin P, Shishi T (2012) CO2-Rich Associated 
gas re-injection miscible flooding mechanism research, 
In 2012 Fourth International Conference on Computa-
tional and Information Sciences, 1297-1299, IEEE, doi: 
10.1109/ICCIS.2012.101.

18. Dong J, Wu S, Xing G, Fan T, Li H, Wang B (2019) 
Factors affecting water alternating hydrocarbon gas mis-
cible flooding in a low permeability reservoir, In Inter-
national Petroleum Technology Conference, OnePetro, 
https://doi.org/10.2523/IPTC-19063-MS.

19. Weyburn-Midale Fact Sheet: Carbon Dioxide Capture 
and Storage Project, https://sequestration.mit.edu/tools/
projects/weyburn.html.

20. Jensen G (2022) Assessing the Potential for CO2 EOR 
and CO2 Storage in Depleted Oil Pools in Southeast-
ern Saskatchewan, Canada, http://dx.doi.org/10.2139/
ssrn.4298632.

21. Farouq Ali S M, Thomas S (1994) A realistic look at en-
hanced oil recovery. Scientia Iranica, 1: 3.

22. Hashemi S M H, Sedaee B (2022) Mechanistic simula-
tion of fracture effects on miscible CO2 injection, Petro-
leum Research, 7, 4: 437-447, https://doi.org/10.1016/j.
ptlrs.2022.01.006.

23. Jarrell P M, Fox C E, Stein M H, Webb S L (2002) 
Practical aspects of CO2 flooding, 22: 13-35, Rich-
ardson, TX: Society of Petroleum Engineers, doi.
org/10.2118/9781555630966.

24. Alian S S, Alta'ee A F, Omar A A, Hani I (2011) Study 
of asphaltene precipitation during CO2 injection for 
Malaysian light oil reservoirs, In 2011 National Post-
graduate Conference, 1-5, IEEE, doi: 10.1109/Nat-
PC.2011.6136535.

25. Okhovat M R, Hassani K, Rostami B, Khosravi M 
(2020) Experimental studies of CO2-brine-rock interac-
tion effects on permeability alteration during CO2-EOR, 
Journal of Petroleum Exploration and Production Tech-
nology, 10: 2293-2301, https://doi.org/10.1007/s13202-
020-00883-8.

26. Emera M K, Sarma H K (2007) Prediction of CO2 solu-
bility in oil and the effects on the oil physical properties. 
Energy Sources, Part A, 29, 13: 1233-1242, https://doi.
org/10.1080/00908310500434481.

27. Al-Jarba M, Al-Anazi B D (2009) A comparison study of 
the of the CO2-oil physical properties literature correla-
tions accuracy using visual basic modelling technique, 
Nafta, 60, 5: 292-295.

28. Rojas G, Ali S F (1986) Scaled model studies of carbon 
dioxide/brine injection strategies for heavy oil recovery 
from thin formations, Journal of Canadian Petroleum 
Technology, 25, 01: https://doi.org/10.2118/86-01-07.

29. Tunio S Q, Tunio A H, Ghirano N A, El Adawy Z M 
(2011) Comparison of different enhanced oil recovery 
techniques for better oil productivity, International Jour-



B. Yazdani et al. Journal of Petroleum Science and Technology 12(3): 30, 2023, Pages 2-11
11

nal of Applied Science and Technology, 1: 5.
30. Ampomah W, Balch R S, Cather M, Will R, Gunda D, 

Dai Z, Soltanian M R (2017) Optimum design of CO2 
storage and oil recovery under geological uncertainty, 
Applied Energy, 195: 80-92, https://doi.org/10.1016/j.
apenergy.2017.03.017.

31. He J, Xie J, Wen X H, Chen W (2015) Improved proxy 
for history matching using proxy-for-data approach 
and reduced order modeling, In SPE Western Regional 
Meeting, OnePetro, https://doi.org/10.2118/174055-MS.

32. Haghshenas Y, Niri M E, Amini S, Kolajoobi R A (2021) 
A physically-supported data-driven proxy modeling 
based on machine learning classification methods: Ap-
plication to water front movement prediction, Journal 
of Petroleum Science and Engineering, 196: 107828, 
https://doi.org/10.1016/j.petrol.2020.107828.

33. Kim M, Shin H (2020) Machine learning-based predic-
tion of the shale barrier size and spatial location using 
key features of SAGD production curves, Journal of 
Petroleum Science and Engineering, 191: 107205, 916-
928, DOI: 10.1016/j.apenergy.2016.10.012.

34. El-Sebakhy E A (2009) Forecasting PVT properties of 
crude oil systems based on support vector machines 
modeling scheme, Journal of Petroleum Science and 
Engineering, 64, 1-4: 25-34, https://doi.org/10.1016/j.
petrol.2008.12.006.

35. Ahmadi M A (2012) Neural network based unified par-
ticle swarm optimization for prediction of asphaltene 
precipitation, Fluid Phase Equilibria, 314: 46-51, https://
doi.org/10.1016/j.fluid.2011.10.016.

36. You J, Ampomah W, Sun Q (2020) Development and 
application of a machine learning based multi-objective 
optimization workflow for CO2-EOR projects, Fuel, 264: 
116758, https://doi.org/10.1016/j.fuel.2019.116758.

37. Amini S, Mohaghegh S, Gaskari R, Bromhal G (2012) 

Uncertainty analysis of a CO2 sequestration proj-
ect using surrogate reservoir modeling technique, In 
SPE Western Regional Meeting, OnePetro, https://doi.
org/10.2118/153843-MS

38. Gaspar A T, Santos A, Maschio C, Avansi G, Schiozer D 
(2015) UNISIM-IM: study case for management vari-
ables optimization of reservoir exploitation strategy, In-
ternational Journal of Modeling and Simulation for the 
Petroleum Industry, 9: 1-7.

39. John F O (2015) Optimization of a water alternating gas 
injection compositional fluid flow simulation with water 
alternating gas injection optimization on the upscaled 
synthetic reservoir CERENA-I, Master of Science The-
sis, Instituto Superior Técnico, Universidade de Lisboa.

40. Yeap W J (2018) Study of EOR-CO2 miscible flooding 
performance using compositional reservoir simulation 
with local grid refinement, Master's Thesis, Texas A and 
M University, https://hdl.handle.net/1969.1/173312

41. Novak Mavar K, Gaurina-Međimurec N, Hrnčević L 
(2021) Significance of enhanced oil recovery in carbon 
dioxide emission reduction. Sustainability, 13, 4: 1800, 
https://doi.org/10.3390/su13041800.

42. Gaurina-Međimurec N, Mavar K N (2019) Carbon cap-
ture and storage (CCS): geological sequestration of CO2, 
CO2 Sequestration, 1-21.

43. Lake L W, Lotfollahi M, Bryant S L (2019) CO2 en-
hanced oil recovery experience and its messages for CO2 
storage, In Science of Carbon Storage in Deep Saline 
Formations 15-31, Elsevier, https://doi.org/10.1016/
B978-0-12-812752-0.00002-2.

44. Ren D, Wang X, Kou Z, Wang S, Wang H, Wang X, 
Zhang R (2023) Feasibility evaluation of CO2 EOR 
and storage in tight oil reservoirs: a demonstration proj-
ect in the Ordos Basin, Fuel, 331: 125652, https://doi.
org/10.1016/j.fuel.2022.125652.


