
Abstract
Rock typing has been utilized in numerous studies where it has been proven to be a powerful tool  for determining 
rock properties and estimating unknown parameters such as permeability. It can be performed based on routine core 
analysis (RCAL) or special core analysis (SCAL) data, and the accuracy of results could be different. Because of the 
high cost and time-consuming process of special core analysis, SCAL data are not available in all wells of a reservoir. 
Hence, in this study, a practical workflow is carried out using RCAL data. For this purpose, the data of four wells in a 
reservoir have been used. After utilizing three HFU (Hydraulic Flow Units), Winland r35 and lithology methods, the 
results showed that the best and the most accurate rock typing method is Winland r35 method. In the next step, several 
approaches were used to estimate permeability, and it was observed that the combination of the multi-resolution 
graph-based clustering (MRGC) method in GEOLOG software and Winland r35 method in this carbonate reservoir 
is the best estimation approach. The correlation coefficient (R2), between measured and estimated permeability was 
approximately 0.96. Eventually, when the only available data are the RCAL data, the presented algorithm yields a 
high degree of accuracy.
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Introduction
Rock typing identifies the reservoir rocks that 
have similar geological, fluid flow, and reservoir 
characteristics and it is performed in a way that provides 
the best possible agreement of calculated properties 
with measured ones. In rock typing, individual groups 
of rocks should have similar characteristics and need to 
be evaluated accordingly [1-5]. Thus, rock typing should 
focus on objectives in reservoir modeling (i.e. correlating 
permeability or other unknowns with the available data 
related to rock characteristics) [6-10]. 
Rock typing is performed to help reservoir modeling, i.e. 
determining unknowns for each grid cell from the known 
parameters based on the established rock types. Rock 
typing requires the understanding of reservoir lithology 
(e.g. limestone, dolomite, shale, etc.) and physical 
characteristics (i.e. porosity, permeability, etc.) [9].There 
are different rock typing methods that may be used in 
reservoir studies. Rushing et al. presented a method for 
integrating different evaluations of rock typing at different 
scales (e.g., depositional, petrographic, hydraulic) based 

on drilling core data [11].  A new method called FZI-Star 
(FZI*) that utilizes the concept of hydraulic radius to 
identify hydraulic flow units was introduced by Mirzaei-
Paiaman et al [6]. Static and dynamic rock types in PSRT 
and PDRT were distinguished by Mirzaei-Paiaman et al 
[7-8]. A PSRT is a group of rocks having similar primary 
drainage capillary pressure characteristics, whereas 
a PDRT is a class of rocks having similar fluid flow 
indicators.
One of the main objectives of rock typing is to estimate 
permeability [12]. Estimating permeability in reservoir 
rocks can be improved by involving different flow units 
based on geological characteristics [13-15]. During rock 
typing, rock units with some similar characteristics (i.e., 
porosity and permeability) will be determined, and thus, 
it is possible to predict permeability for unseen rocks. 
Due to the high cost and time-consuming procedure 
of obtaining the reservoir permeability directly from 
drilled wells, many researchers have tried to present 
new approaches for this purpose [16-17]. Such methods, 
which are basically an integration of conventional rock 
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typing methods and even simulation techniques, were 
suggested by some researchers [18-20], and also, some 
methods have been presented based on defining new models 
for permeability estimation. For instance, mercury injection 
capillary pressure data were used to build a new carbonate 
and shale reservoirs model by Liu et al [5].
Some rock typing methods such as FZI are mainly based 
on fluid flow equations in simple capillary tubes. These 
methods are helpful, primarily for qualitative evaluations. In 
contrast, some rock typing methods that relate rock type with 
static rock characteristics such as grain density, lithology 
and log measurements are based on more physically 
meaningful properties; and therefore, they are more realistic 
for quantitative evaluations and modeling purposes. A 
practical rock typing method is one that is able to represent a 
realistic distribution of reservoir properties such as lithology, 
porosity, permeability, and saturation in the reservoir model. 
Hence, rock typing is usually a challenging step in reservoirs 
characterization [21-22].
So far, many researchers have tried to introduce new approaches 
for rock typing based on various data such as SCAL, RCAL, 
seismic attributes, geology, and recently artificial intelligence 
algorithms. FZI parameter was introduced by Ameafule and 
coworkers [13]. One of the other basic parameters is PRT; 
the PRT classes are, in essence, units of rocks (consisting 
of multiple facies) with similar petrophysical correlations 
and common porosity-permeability bins in the poro-perm 
domain [3]. Kelishami et al applied petrophysical rock typing 
(PRT) method to evaluation of Cenomanian–Santonian 
lithostratigraphic units in southwest of Iran [23]. Moreover, 
some methods are an extended and improved iteration of the 
already existing methods like FZI* [6], FZI** [24]. Some of 
them suggest new parameters for rock typing, such as the true 
effective mobility (TEM) function [7, 25]. TEM-function 
converts relative permeability data to fluid flow indicators for 
dynamic rock typing. Mirzaei et al divided rock typing into 
petrophysical static rock typing (PSRT) [7] and petrophysical 
dynamic rock typing (PDRT) [22] and even improved PSRT 
to gain PSRTI. But performing the existing SCAL-based 
methods using RCAL data as inputs has not been considered 
[26-29].
In this study, we have introduced a hybrid algorithm that 
integrates MRGC and Rock Typing methods to improve 
reservoir permeability estimation. We have proposed the 
following workflow; first, rock typing, using RCAL data is 
carried out based on three rock typing methods (hydraulic 
flow units, Winland r35 and rock typing based on lithology). 
Rock typing results, in conjunction with log data, are then 
fed to MRGC, where permeability is estimated based on the 
input data. Estimated permeability associated with each rock 
typing method is compared with the measured permeability 
and consequently, the best rock typing method is chosen and 
permeability derived from this method is chosen as the final 
estimation.
The only available data were  RCAL data, and therefore, a 
workflow has been designed to determine rock types and 
predict permeability, accordingly. In this workflow, various 
rock typing methods including hydraulic flow units, Winland 
r35 method and rock typing based on lithology have been 
applied on mentioned data.  

Materials and Methods
Study Data and Framework

Our study has been carried out on a carbonate reservoir 
containing fractures located in southwest Iran. The available 
data are the results of RCAL of samples taken from four  wells 
in this reservoir. Input data consist of porosity, permeability 
and grain density, and the rock typing and permeability 
estimation methods are performed based on these data. The 
main framework of this research is shown in Figure 1.

Fig. 1 The schematic framework of this study.

Methods
Rock Typing Using Hydraulic Flow Unit, Winland r35 and 
Lithology

The hydraulic quality of the rock is controlled by pore 
geometry which is a function of mineralogy and texture. 
Various permutations of these geological attributes often 
indicate the existence of distinct rock units with similar pore 
throat attributes. Determination of these pore throat attributes 
is central to accurate zoning of reservoirs into units with 
similar hydraulic properties [13].
In the hydraulic flow unit method, rock types are classified 
using the following three equations:

0.0314 KRQI
φ

=
                                                                     (1)
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−Φ                                                                              (2)

RQIFZI
z

=
Φ

                                                                               
(3)

where K, ϕ , RQI, ϕ Z, and FZI are permeability (mD), effec-
tive porosity (fraction), rock quality index (µm), normalized 
porosity (fraction) and flow zone indicator, respectively.
Core samples of the same rock type will have similar FZI 
values. Furthermore, on a plot of RQI versus ϕ Z (Figure 2a), 
samples which lie on the same straight line constitute a hy-
draulic unit (Ameafule et al). The corresponding plot of hor-
izontal permeability versus porosity is shown in Figure 2b.
Additionally, in the Winland r35 R35 method, rock types are 
calculated using the Equation 4 as follows:

( ) ( ) ( )35 0.732 0.588 log 0.864 logLog R K= + − Φ               (4)

where R35 is the calculated pore throat radius at 35% mercury 
saturation from a mercury injection capillary pressure test 
(µm). Core samples of a given rock type will have similar 
R35 values [30].
For the mentioned formation, a plot of horizontal air 
permeability versus porosity and the straight lines related to 
R35 (microns) for each of the specified rock types are shown 
in Figure 2c. As can be seen, five specified groups of data are 
observed based on the Winland r35 rock typing concept.
The key properties for lithology-based rock typing include 
core porosity and lithology (or grain density) available from 
both log and core data. In this study, for lithology-based rock 
typing, core samples with more than 65% of limestone were 
defined as limestone-dominated rock types, core samples 
with more than 65% of dolomite were defined as dolomite-
dominated rock type, and core samples with less than 65% 
of dolomite and 65% of limestone were defined as mixed 
rock. In Figure 2d, the defined rock types for all core samples 
based on lithology are shown. Therefore, three different rock 
types are considered in this field.
Ye and Rabiller in 2000 introduced a new clustering algorithm 

called MRGC (Multi-Resolution Graph based Clustering) 
that did not have the problems of previous methods (such 
as Dynamic Clustering (DC), Ascendant Hierarchical 
Clustering (AHC), Self-Organizing Map (SOPM), and etc.) 
in log data processing [31-33]. Further studies by Mohebian 
et al in 2018 also indicated the effective application of RVM 
in classifying anomalous seismic data to determine gas-
bearing zones in an oil field [34].
Multi-Resolution Graph-based Clustering (MRGC) is an 
approach that gathers its knowledge by recognizing patterns 
in well logs using non-parametric K-nearest-neighbor and 
graph data representation. It allows the system to learn 
through experience how to log measurements related to 
important petrophysical parameters (e.g. porosity, water 
saturation, and permeability) [35]. 
This method is one of the few non-parametric methods  
in which logs data are evaluated by two indexes, i.e. NI 
(Neighboring index) and KRI (kernel representative index). 
NI indicates that each point in a data set is close to the peak 
or bottom of the probabilistic data density function. KRI 
determines the points prone to representation as to the core or 
center of the cluster. If NI(x) is the value of NI in x point, and 
y is the first neighborhood of x with NI(y) > NI(x) condition, 
the KRI at point x is calculated using the following equation:

( ) ( ) ( ) ( ). , . ,KRI x NI x M x y D x y=                                 (5)

which is, M(x,y)=m, y is the m-neighbor of x, and D(x,y) is 
the distance between x and y.

Reservoir Permeability Estimation 
Permeability Estimation Based on Hydraulic Flow Unit, 
Winland r35 Method and Lithology

Permeability can be determined as a function of porosity 
for each rock type if FZI is known by relating it to some 
rock characteristics. Permeability from the FZI method is as 
follows.

( )

3
2

21014 *
1

K FZI
Φ

=
−Φ

                                                  (6)

Fig. 2 Rock typing (a), (b) based on flow zone indicators (c) based on Winland r35 method (d) based on lithology.
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Since the preferred method of permeability estimation is 
field-based (not well-based), FZI values for all core data 
from all the wells have been correlated together. This 
is because using the same FZI values in all wells is more 
applicable in reservoir modeling than determining it for each 
well individually. Based on the plot of permeability versus 
porosity which is shown in Figure 2b, permeability relations 
for the identified rock types are as follows (Table 1).
As discussed, calculated FZI (from core permeability 
and core porosity) cannot directly be used in the reservoir 
simulation model to estimate permeability because FZI 
is not a known physical characteristic. It is a function of 
permeability itself. To use rock types from the hydraulic flow 
unit method, FZI should be correlated with log measurements 
with satisfactory results. Suppose calculated FZI can be 
introduced to the reservoir simulation model by linking it 
to a known physical characteristic of the rock (such as their 
response in petrophysical log data). In that case, permeability 
can be determined using this rock typing approach. 
Beside the HFU approach, based on Winland r35 method, 
permeability and porosity can be correlated with other rock 
characteristics using Equation 4. In the case of 35% mercury 
saturation, Equation 4 for determining permeability is written 
as follows:

( )1.700681.244898 1.469388
3510AirK R φ−=

                    (7)

According to Equation 7, core data for different rock types 
would follow different straight lines in which each rock 
type would have its own parameters. Once these parameters 
are defined, then permeability for each rock type can be 
determined from MICP data. Based on the plot of permeability 
versus porosity which is shown in Figure 2c, permeability 
relations for the identified rock types are as follows (Table 2).
In all methods used, 80% of the core data were used as 
training data, and 20% of the data were used as validation 
data (unseen data). Figure 3 shows the relationship between 
estimated and actual permeability for the available core 
samples using the Winland r35 method in the unseen section 
of the interval. Overall, the agreement between actual and 
estimated data from low permeability to high permeability 
data is satisfactory, with a correlation coefficient (R2) of 
more than 0.96.
In order to perform permeability estimation based on 
lithology, a corresponding rock type was assigned for each 
valid core sample based on the given lithology or grain 
density. For each group of data separated based on lithology, 
a relation between permeability and porosity was determined.

Table 1 The porosity-permeability relations for the identified rock types based on the FZI method.

Rock Type FZI range Average FZI Porosity-Permeability relations

RT-1 FZI<0.34 0.25
3

2
2(1014)(0.25)

(1 )
K ϕ

ϕ
=

−

RT-2 FZI<0.75≤0.34 0.52
3

2
2(1014)(0.25)

(1 )
K ϕ

ϕ
=

−

RT-3 FZI<1.5≤0.75 1.11
3

2
2(1014)(1.11)

(1 )
K ϕ

ϕ
=

−

RT-4 FZI<2.94≤1.5 2.06
3

2
2(1014)(2.06)

(1 )
K ϕ

ϕ
=

−

RT-5 FZI<5≤2.94 3.78
3

2
2(1014)(3.78)

(1 )
K ϕ

ϕ
=

−

RT-6 FZI≤5 7.93
3

2
2(1014)(7.93)

(1 )
K ϕ

ϕ
=

−

Table 2 The porosity-permeability relations for the identified rock types based on R35 method.

Rock Type R35 range Average R35 Porosity-Permeability relations

RT-1 R35<0.15 0.113 ( 1.244898 ) 1. 70068 1.46938810 (0.113)  
A

K ir ϕ−=

RT-2 R35<0.3≤0.15 0.225 ( 1.244898 ) 1. 70068 1.46938810 (0.225)  
A

K ir ϕ−=

RT-3 R35<0.55≤0.3 0.431 ( 1.244898 ) 1. 70068 1.46938810 (0.431)  
A

K ir ϕ−=

RT-4 R35<1≤0.55 0.75 ( 1.244898 ) 1. 70068 1.46938810 (0.75)  
A

K ir ϕ−=

RT-5 R35≤1 1.249 ( 1.244898 ) 1. 70068 1.46938810 (1.249)  
A

K ir ϕ−=
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Fig. 3 Estimated versus actual permeability for the available core samples in the unseen section of well (a) using hydraulic flow unit method 
(b) using Winland r35 method, and (c) using lithology method.

Considering that the dominant lithology in each well is also 
different based on core data in wells 004, 011 and 017, the 
data indicate a significant effect of formation heterogeneity 
across the reservoir area and in the vertical direction. Based 
on the best possible curve-fitting of the data, the relationship 
between permeability versus porosity for each lithology 
group was determined (Table3).
In order to correlate FZI, R35 and lithology with log 
measurements and prepare permeability logs based on the 
aforementioned methods for different wells in the reservoir 
formation of the understudied field, a nonlinear regression 
analysis was performed among calculated parameters (as 
Table 3 The relationship between permeability versus porosity for each lithology group.

Rock Type Lithology Porosity-Permeability relations

RT-1 Dolomite dominated (more than 65% of dolomite) 2 5.100520.05633K e ϕ=

RT-2 Limestone dominated (more than 65% of limestone) 2 5.100520.01914K e ϕ=

RT-3 Mixed (less than 65% of limestone and 65% of dolomite) 2 5.100520.03547K e ϕ=

dependent variables) and corresponding petrophysical log 
data (DT, CGR and NPHI as independent variables) for the 
cored intervals using multi-resolution graph-based clustering 
(MRGC) method in GEOLOG software. The estimated FZI, 
Winland r35 and lithology logs for different wells using the 
MRGC method as well as effective porosity logs and the 
mentioned permeability correlations for different rock types 
were used to prepare corresponding permeability logs for 
different wells in the mentioned field. These permeability logs 
can be propagated later in the geological model to prepare 3D 
horizontal permeability model for the matrix system.

Results and Discussion
To understand the accuracy of each method for permeability 
estimation, the results of permeability estimation have been 
validated with real permeability data and Figure 3a, Figure 
3b, and Figure 3c show the relationship between estimated 
and actual permeability for the available core samples in the 
unseen section of interval using mentioned methods with 
correlation coefficients (R2) of around 0.93, 0.96 and 0.45, 
respectively.
Thus, the preferred and more accurate approach for 
permeability estimation under studying reservoir is the 
integration of Winland r35 with MRGC method.
In order to validate the permeability estimation results, core 

actual and estimated permeability should be compared based 
on correlation coefficient (R2) as well as on a plot versus 
depth. It is important to get satisfactory matching results on 
the plot of permeability versus depth. If productive intervals 
(pay zones) have good prediction of permeability, then it 
can be acceptable in terms of prediction of well production 
performance.
Using Winland r35 method (and correlating R35 with log 
measurements) for permeability estimation, the best match 
of estimated versus actual permeability for the available 
core samples  was optained. Also, the hydraulic flow unit 
and lithology-based methods have been employed, and the 
correlation coefficients are displayed in Table 4. 
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Table 4 Correlation coefficients and root mean squared error values 
for each method.

Permeability estimation method R2 RMSE

Winland r35 method 0.96 0.018

Hydraulic flow unit method 0.93 0.032

Lithology-based method 0.45 0.120

Estimated permeability logs for wells 004, 011 and 017 based 
on different Permeability estimation methods, including 
lithology (Lith, using petrophysical evaluated porosity and 
lithology logs), hydraulic flow unit (HFU, using estimated 
FZI and petrophysical evaluated porosity logs) and Winland 
r35 (using estimated R35 and petrophysical evaluated porosity 
logs) are shown in Figure 4 to Figure 6, respectively. As shown 
in the figures, the Winland r35 method offers the best match of 
estimated versus actual core sample permeability and provides 
more reasonable permeability values for dense and porous 
intervals of reservoir formation in the studying field than other 
methods. Its results are demonstrated by red rectangular.

Fig. 4 Estimated permeability logs for well-004.

Fig. 5 Estimated permeability logs for well-011.
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Fig. 6 Estimated permeability logs for well-017.

Conclusions
This study presented a framework of rock typing and, 
therefore, permeability estimation based on the RCAL data 
and applying conventional rock typing approaches.
Different RCAL rock typing methods were examined based 
on the available data, including rock typing based on hydraulic 
flow unit, Winland r35, and lithology. Also, permeability 
estimation based on hydraulic flow unit, Winland r35 and 
lithology were performed , and the following results have 
been concluded:
• By using Winland r35 method (and correlating R35 with log 
measurements) for permeability estimation, the best match 
of estimated versus actual permeability for the available core 
samples (with a correlation coefficient (R2) of 0.96) was 
obtained.
• Winland r35 method is capable of matching core sample 
data with high and low permeability values.
• The correlation coefficient values for hydraulic flow unit 
and lithology-based methods are 0.93 and 0.45, respectively.
• The value of RMSE for the Winland r35 method is 
0.018, confirming this method is the most accurate one for 
permeability estimation.
• The FZI and lithology-based methods showed RMSE 
values of 0.032 and 0.12.
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