
Abstract
The reservoir heterogeneity controls interwell connectivity and affects reservoir dynamics. An approach is to use 
continuum percolation to study the flow behavior of low to intermediate net-to-gross reservoirs. In this study, 
reservoir models with a permeability contrast have been used, and the interwell connectivity between two wells and 
the remaining unswept oil has been determined. The percolation parameters, including the amount of recoverable oil 
connected between two wells and the amount of unswept oil (also referred to as dangling end fraction (that control 
fluid displacement (e.g. waterflooding) vary as a function of sand body size and reservoir size. These properties 
show a power-law function of net-to-gross (i.e. occupation fraction) with some exponents called critical exponents. 
There exist a few publications on the numerical values of these parameters. The main contribution of this study is 
to investigate the effects of reservoir anisotropy on the percolation parameters. To determine the swept (backbone) 
fraction connected between two wells, the flow-based criteria depending on the system size have been proposed. 
The results show that the critical exponents for the backbone and dangling ends are in the range of 0.3to 0.45 and 
-0.45 to -0.20.   It is notified that the limitation to perform simulations on infinite systems results in a range for these 
exponents, although there exist unique values for infinite systems. Moreover, a sensitivity analysis is implemented 
to find the correct flow-based criteria for the backbone. The results of this study extend the applicability of the 
percolation properties curves for anisotropic reservoirs. 
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Introduction
The structures of porous media are affected by the 
complex depositional process, which sometimes results 
in high-permeability sands and low-permeability shales, 
mudstone and siltstone. In such geometrically complex 
systems with a given spatial distribution of sand bodies, the 
flow behavior depends not only on the quality of the sand 
bodies but also on their connectivity [1, 2]. Applications 
of such systems with significant permeability contrast 
may be found in hydrology, e.g. solute transport, oil and 
gas reservoirs, e.g. waterflooding, geothermal reservoirs 
and wastewater disposal [3-6].
Connectivity and conductivity are the main issues in 
geometrically complex mediums.  In this study, by 
connectivity, a static connection of permeable regions 
(or a specific rock type) distributed in a given reservoir 
is meant by us. Also, conductivity refers to the dynamic 
behavior of such mediums, e.g. effective permeability 

of the medium. For example, such connectivity has an 
indisputable effect on the flow behavior in reservoirs. 
One conventional approach to assess the impact of 
such connectivity is to generate many realizations (i.e. 
equiprobable reservoir models) and to perform numerical 
flow simulations that are very time-consuming.  
On the other hand, percolation theory, initially developed 
for infinite systems, provides a suitable statistical 
approach to investigate connectivity and conductivity 
in heterogeneous systems [3, 4]. Also, finite-size scaling 
within percolation theory has been applied to deal with 
the boundary effects in finite size systems [4]. There are 
a variety of percolation types, i.e. bond/site percolation 
(on fixed bonds/points, respectively) and continuum 
percolation (by letting the objects overlap) [7]. The 
flexibility of the continuum percolation framework 
enabled it to be suitable for evaluating the connectivity 
and conductivity of heterogamous media [2, 7, 8]. 
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In 1957, Broadbent and Hammersley first explored 
percolation theory [9], and since then, it has been developed 
in both applications and variety [8, 10]. For example, 
the connectivity and conductivity of a 2D porous media 
made of randomly overlapping sand bodies distributed in 
impermeable background rock were investigated by King in 
1990 [1]. It has been emphasized the existence of a specific 
percolation threshold above which the connectivity of the 
system increases rapidly [1]. In 1992, randomly, distributed 
spheres and circles as permeable units, respectively in 2D and 
3D were used by Berkowitz and Balberg, and it was shown 
that the power laws with unique parameters could be applied 
to predict the hydraulic conductivity of the systems [11]. 
Moreover, in 1995, Berkowitz studied the fracture networks 
and proposed a minimum number of intersections per fracture 
and defined the probability that any fracture is connected to 
the spanning cluster to evaluate the connectivity [12]. The 
threshold for randomly spatially spheres distributed in a 
large scale 3D continuum system was estimated by Rintoul 
and Torquato in 1997, and the power-law exponents were 
calculated [13]. The reported algorithms, among the others, 
to determine the percolation sub-networks include Hoshen 
et al. (1997) for the connected cluster (which connects both 
sides of the systems through permeable objects) and internal 
perimeters of the clusters or Dokholyan et al. (1998) for 
the minimal path (or chemical distance) between two sites, 
defined as shortest path on a percolating cluster connecting the 
two sites [14,15]. Other publications discuss the universality 
of the percolation exponents [16-19]. 
The extensions of basic percolation are to include the effects 
of anisotropy in the finite-size scaling framework [2, 20], 
the spatial correlation which may modify the power-law 
exponents [21], and the object sizes which may be replaced 
by an effective length within the finite size analysis [22, 
23]. However, in the case of a very broad size distribution, 
the percolation exponents may deviate from their universal 
values [24]. Another extension uses the point-to-point 
connection in 2D problems instead of conventional line-to-
line connection. In 2016, point-to-point connection criteria 
for continuum percolation problems were used by Tavagh-
Mohammadi et al. [25] and Sadeghnejad and Masihi [26], 
and the percolation critical exponents were determined.
Several researchers have reported the applications of 
percolation approach to geoscience problems. In 2001, the 
breakthrough time of an injected fluid between a pair of 
injection and production wells from the percolation approach 
was estimated by King et al [27] and compared with the 
conventional flow simulations. In 2006, facies connectivity 
in a reservoir made of isotropic and anisotropic facies 
was modeled by Nurafza et al. [28]. In 2011, the average 

reservoir conductivity of Norouz oil field, Iran, was obtained 
by Sadeghnejad et al. from both percolation approach and 
conventional numerical modeling simulation [23]. In 2014, 
continuum percolation was used to obtain volumes of oil 
recovered from the backbone and the remained oil in dangling 
ends by  Wen et al. [29].
In this study, on the connectivity, backbone and dangling end 
fractions in 2D reservoir models with anisotropic sand bodies 
distributed randomly within the model are concentrated by 
us. This study will focus on the correct determination of 
backbone and dangling end fractions in anisotropic reservoirs 
using percolation finite-size scaling law of percolation theory. 
Furthermore, a sensitivity analysis on percolation threshold 
for determining a minimum flow threshold is proposed

Materials and Methods
Continuum percolation deals with models in which permeable 
objects (high permeability regions) are distributed randomly 
in the system, and there is a chance of overlapping. An 
example related to oil and gas reservoir by which we discuss 
its theoretical background is a system made of overlapping 
high permeability sand bodies distributed randomly in an 
impermeable background. We define occupancy probability, 
p, (equivalent to net-to-gross in reservoir studies) as the area 
fraction (or volume fraction in 3D) of a system occupied by 
the sand bodies. At each p value, there will be a number of 
clusters made by sand bodies in the system. There is also 
a specific p called percolation threshold, Pc

∞, at which a 
spanning cluster (i.e. connected cluster) appears, and above 
it, there is global connectivity within the medium through the 
sand bodies. 
The strength of this connected cluster can be described by 
a percolation parameter called percolation probability, P, 
which is defined as the probability that a site belongs to 
the connected cluster. The connected cluster (also called 
spanning cluster) can then be divided into backbones (those 
parts which carry the main flow) and dangling ends (those 
parts which have a negligible contribution to the flow). For 
a very large system size (infinite), these three percolation 
parameters follow a similar power law, i.e. [4,10],

( ) ( )cP p p p β∞∝ −                                                            (1)

( ) ( ) B
cB p p p β∞∝ −                                                                 (2)

( ) ( ) D
cD p p p β∞∝ −

                                                         (3)

where β, βB and βD are the critical exponents for the connected 
fraction, backbones and dangling end fractions, respectively, 
and p is the occupancy probability (i.e. net to gross in 
reservoir studies). The numerical values for β, βB and βD are 
given in Table 1.

Table 1. The numerical values for the critical exponents  

Critical exponents 2D 3D Reference

β 0.41 ]7,8[

βB 0.475 1.05 ]4,7[

βD -0.423 - ]4[
v 0.75 0.88 ]7,8[
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However, in reality, all the systems are finite. There is a finite-
size dependency for percolation parameters. For example, an 
apparent percolation threshold can be defined for the finite-
size systems as [4, 10],

1

( )c cP L p L ν
−

∞− ∝

                                                                     (4)

where P̃c is the apparent percolation threshold, and v is 
the correlation length exponent. Moreover, the connected 
fraction P, backbones B and dangling ends D fractions have 
the following finite-size dependency,

1( , ) ( )cP p L L p p L νβ ν− ∞ = ℑ − 
                                             (5)

1( , ) ( )B
B cB p L L p p Lβ ν ν− ∞ = ℑ −                                           (6)

1( , ) ( )D
D cD p L L p p Lβ ν ν− ∞ = ℑ −                                   (7)

where ℑ , Bℑ  and Dℑ  represent type curves for the P, B 
and D, respectively that can be determined from numerical 
simulations.
It must be emphasized that the percolation parameters used 
in Equations 5 to 7 are the respectively mean connected 
fraction, mean backbones and mean dangling ends fractions 
obtained over all possible realizations of the reservoir 
models. Similarly, the errors (represented statistically by 
standard deviation) on the mean values of these percolation 
parameters (which is shown by Δ(p,L)) can be determined 
which also have a similar finite-size behavior, i.e.,

1( , ) ( )cp L L p p L νβ ν− ∞ ∆ = ℜ −                                     (8-1)
1( , ) ( )B

B B cp L L p p Lβ ν ν− ∞ ∆ = ℜ − 
                                      

(8-2)
1( , ) ( )D

D B cp L L p p Lβ ν ν− ∞ ∆ = ℜ − 
                                    (8-3)

However, reservoir models themselves or sand bodies are 
often not isotropic, so Equations 5 to 8 may not be used 
straightforwardly to such reservoirs.
A practically relevant feature that should be considered in 
percolation approach is the effect of anisotropy. Anisotropy 
may be implemented by considering different lengths of the 
sand bodies in the X and Y directions. Hence, in such cases, 
an aspect ratio can be defined as:

X

Y

L
L

ω =
                                                                                       (9)

where LX and LY are the lengths of the sand bodies in the 
X and Y directions. If there is a distribution for sandbody 
lengths, an effective sand body size for the whole system can 
be introduced to define this aspect ratio [4,12]. As shown and 
validated previously by Masihi et al. [20] and Sadeghnejad 
et al. [2], for the case of connectivity and permeability 
properties, the scaling relations (Equation 8) may be applied 
to anisotropic systems provided by us; moreover, we use 
an anisotropic apparent percolation threshold cp  (defined 
below) and multiply the term ω1/2 in the right-hand side of 
Equation 8, as obtained by the following equation (Equation 
10).

1( )c c i xp p L νω∞ −− = Λ

                                                          (10)

where i indicates the X or Y directions and the coefficient   
to be determined numerically. The reason for proposing the 
geometric mean length ω1/2=(Lx Ly)

1/2 is due to the dependency 

of variance in connectivity on the mean cluster size in the 
system [4]. This paper uses a similar approach to Masihi et al. 
[20] and Sadeghnejad et al. [2] to account for the anisotropy 
in the backbone and dangling ends fractions properties.

Models Description
Imagine a squared 2D medium with a side size of L 
within which the sand bodies with size a×b are distributed 
randomly. A MatLab code has been developed to perform the 
simulations, and the statistics have been summarized. The 
framework and details of how the base code for isotropic 
systems works can be found in References [2,4,20]. Isotropy 
existed when a=b. To calculate the percolation parameters 
p, P, B and D, a fine grid of size 1/10 of the sand bodies has 
been covered by us. Also, appropriate algorithms are needed 
to determine the connected cluster and the backbone and 
dangling ends fractions. In this study, the Hoshen algorithm 
was used to define the connected cluster [30] and a flow-
based algorithm [4, 29] to characterize the backbone and 
dangling ends fractions.
In Figure 1, realizations of overlapping squared sand bodies 
of side size 10 within a system of size L=100 at various 
densities of sand bodies (a) p=0.15, p=0.3, (c) p=0.45, (d) 
p=0.6, (e) p=0.75 and (f) p=0.9 are shown. Moreover, in 
Figure 2, various clusters (in different colors) that existed in 
realizations given in Figure 1 are shown. As expected, not 
all parts of these clusters contribute to the main flow through 
the system. Hence, it is necessary to characterize those parts 
of connected clusters which carry the main flow. To do this, 
first, the isolated clusters must be removed as they have no 
contribution to the main flow. 
Then, to determine the backbone fraction or those parts of 
connected clusters which carry the main flow, single phase 
flow for an incompressible fluid is solved to determine the 
pressure distribution with the governing equation, 

. 0K P∇ ∇ =                                                                                (2)
where K is the permeability, and P is the pressure field. From 
this, then, the Darcy law can be used to calculate the total flow 
in the system and the flow in both the X and the Y directions 
for each grid cell. As emphasized by Wen et al. in 2014 [29], 
a minimum flow threshold may be set to characterize the 
backbone fraction.  If the fluid ratio that passes through a 
grid cell to the total fluid inside the medium is greater than 
this preset threshold, then it belongs to the backbone of the 
connected cluster. Otherwise, it belongs to the dangling ends. 
However, in practice, the method of choosing this threshold 
is a challenge. For example, a threshold of 5% for the ratio of 
grid flow to the total flow without any justification was used 
by Wen et al. in 2014 [29]. The question raised is that this 
threshold may depend on the system size and net to gross p. 
In this study, four criteria to set the threshold are proposed 
for the first time, as summarized in Table 2. In the proposed 
approach, the threshold by perpendicular area to the flow to 
consider the effect of the system size is normalized. As the 
system gets larger, the amount of total flow will increase. 
Hence, perpendicular area to the flow is used to eliminate 
the effect of system size on the total flow. After the backbone 
fraction has been determined, the dangling ends can be 
obtained by: 
P B D= +                                                                               (12)
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Fig. 1 Continuum percolation for a system size of L=10 and sand body size of 10×10 at various p values, the darker color represents the 
impermeable background, and the light one represents the sand bodies. (a) p=0.15, (b) p=0.30, (c) p=0.45, (d) p=0.60, (e) p=0.75 and (f) 
p=0.90.

Fig. 2 Illustration of various clusters shown in different colors in the realizations shown in Figure 1, (a) p=0.15, (b) p=0.30, (c) p=0.45, (d) 
p=0.60, (e) p=0.75 and (f) p=0.90.

Table 2 Criteria for choosing the flow threshold that is used in 
determining the backbone and dangling ends fraction (“Ac” refers 
to the perpendicular area to the flow).

Criteria No. Flow Threshold = % of the total flow

1 1 100
Ac

×

2
3 1 100
4 Ac

×

3
1 1 100
2 Ac

×

4
1 1 100
4 Ac

×

where B and D represent the backbone and dangling ends 
fraction respectively. As an illustrative example, Figure 2 (e) 
shows a percolated system with a spanning cluster shown 
in yellow. If four different flow thresholds criteria listed in 
Table 2 are applied to this (Figure 2 e), different backbone 
structures may be obtained, as shown in Figure 3. This 
emphasized that if a smaller flow threshold is considered, the 
strength of the backbone fraction increases and the dangling 
ends fraction decreases. After sensitivity analysis on the flow 
threshold, No. 3 is used to distinguish the backbone from the 
dangling ends fraction.
After the developed code in Matlab has been run, the 
occupancy probability, percolation probability, percolation 
threshold, backbone, and dangling ends fractions have been 
determined.
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These statistics for all the generated realizations have to be 
collected, and then the average values of each parameter and 
their standard deviations were determined. However, as in 
other similar simulation studies, to ensure that the collected 
data are statistically reasonable, a minimum number of 
realizations for each system size must be considered. The 
sensitivity analysis on a controlling parameter like the 
percolation threshold must be determined. 
In all generated models, the sand body size is considered to 
fix with size 10x10. Six different system sizes from 50x50 to 
500x500 have been used to build isotropic models ( where the 
aspect ratio ω=1). To build anisotropic models, 10 different 
models with a range of aspect ratios described in Table 3 are 
considered. 

Results and Discussion
The results collected from both isotropic and anisotropic 
models are presented in this section.  

Isotropic Sandbody Models
Six different system sizes ranging from 50x50 to 500x500 are 
used to collect reasonable statistics for the case of isotropic 
models. The minimum number of realizations necessary for 
each system size was obtained by conducting the sensitivity 
analysis on the calculated percolation threshold. For a 
given system size, the minimum number of realizations is 
considered the point above which there is no significant 
change, as shown in Figure 4. Moreover, a summary for 
the minimum number of realizations and the apparent 
percolation threshold values (defined as the inflection point 
on the percolation probability curve in Figure 20) for various 
system sizes are summarized in Table 4.
For checking the reliability of the code, the average 
percolation probability values are calculated at various 
system sizes and their corresponding standard deviations. 

Table 3 The description of models used to build anisotropic systems.
No. System sizes (x×y) Aspect ratio ω No. System sizes (x×y) Aspect ratio ω
1 100×50 2 6 100×25 4
2 100×75 2 7 100×37.5 4
3 100×100 2 8 100×50 4
4 100×150 2 9 100×75 4
5 100×250 2 10 100×125 4

Fig. 4 Sensitivity analysis on the calculated percolation threshold 
for isotropic models, for example, for a system size =300×300.

Fig. 3 The patterns of backbone fraction for the realization shown in Figure 2 (e) are obtained by considering the four different flow thresh-
olds. Figures (a), (b), (c) and (d) correspond to the flow thresholds 1 to 4, listed in Table 2, respectively—a smaller flow threshold results 
in a larger backbone fraction.

Table 4 The estimated values for the apparent percolation threshold 
and the minimum number of realizations for the isotropic models.

System size (x×y) Minimum number 
of realizations

Apparent percolation 
threshold

500×500 50 0.658

300×300 250 0.653

200×200 400 0.649

150×150 650 0.644

100×100 1250 0.633

50×50 2500 0.614
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After that, the curves were rescaled using finite-size scaling 
(Equation 8). Then, the results are compared with those 
reported in the literature [2,4, 20]. As an illustrative example, 
the results of the average percolation probabilities in both 
original value and rescaled form are shown in Figure 5, in 
agreement with the previous publications [2, 4, 23, 28, 31]. 
Moreover, Equation 4 was used for the calculation of apparent 
percolation thresholds at various system sizes that gives the 
following size dependency for isotropic models, 

0.750.1785 0.6674cp L−= − × +                                                      (13)

As mentioned before, a flow-based approach was used to 
determine the backbone and dead ends fractions. However, 
to do this correctly, it is needed to set a minimum flow 
threshold. To determine a suitable threshold, the amount 
of flow that passes through each grid, the total fluid flow 
through the whole medium (QT) as well as the flow which 
passed through the backbone structure (QB) are determined. 
Moreover, suitable criteria which result in a minimum 
difference between the amount of flow through the whole 
medium and the amount of flow through the backbone 
structure are needed. In Figure 6, the results of differences 
in the QB and QT are shown. As can be seen, the threshold 
no. 3 (Table 2) may be selected as the best indicator for 

recognizing the backbone fraction. Thresholds no. 1 and no. 
2 resulted in a relatively high difference between the flow in 
the backbone and the total flow. On the other hand, threshold 
no. 4 is very small and has almost no effect. Hence, using 
threshold no. 3, the backbone and dangling end fractions at 
various system sizes and for all realizations are determined. 
Figures 7 and 8 show the results for the magnitude of the 
backbone and dangling ends fractions and their associated 
uncertainties (i.e. standard deviation values). 
Scaling transformation has then been applied to the 
dataset shown in Figures 9 and 10 to obtain the master 
curves for the backbone and dangling ends fractions 
of isotropic systems. In the literature, two values are 
reported for βB, 0.478 and 0.63 [4,29]. Furthermore, βD is 
reported as -0.423 and -0.23 [4,29]. However, it has been 
numerically found that these values cannot satisfy finite-
size scaling for the simulated dataset. In this study, similar 
scaling (Equations 6-7 and Equations 9-10) was used to 
determine the numerical values of the critical exponents 
βB and βD. The estimated values for βB and βD were found 
to be in the range of 0.3 to 0.45] and -0.45 to -0.20, 
respectively, in line with reported values in the literature 
[4,29]. These exponent values were used to get the data 
collapse and determine the master curves. Figures 9 and  
10 show the results of the rescaling for the backbone and 
dangling ends fractions of isotropic models, respectively.

Fig. 6 Sensitivity analysis on the total fluid flow (QT) and the flow 
which passed through the backbone (QB) for different values of the 
minimum flow threshold listed in Table 2.

Fig. 5 The plot of the average percolation probability at different 
system sizes of isotropic models in (a) usual form (b) rescaled form 
using finite scaling law.

Fig. 7 Illustration of the results of Backbone fraction for isotropic 
models (a) average value and (b) standard deviation.

a b a b

a b

Fig. 8 Illustration of the results of Dangling ends fraction for 
isotropic models (a) average value and (b) standard deviation.
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Fig. 9 Finite-size scaling of randomly spatially distributed sand 
bodies for different isotropic system sizes (a) backbone fraction and 
(b) the standard deviation of the backbone fraction.

Anisotropic Sandbody Models
Again, for anisotropic systems described in Table 3, it is 
first needed to numerically determine the minimum number 
of realizations for which the simulation results become 
statistically reasonable. In Table 5, the results of the sensitivity 
analysis on the percolation threshold to determine the 
minimum number of realizations for the case of anisotropic 

Fig. 10 Finite-size scaling of randomly spatially distributed sand 
bodies for different isotropic system sizes (a) dangling ends fraction 
and (b) the standard deviation of the dangling ends fraction.

models are shown. It indicates that the percolation threshold 
will increase as effective length or aspect ratio increase. In 
addition, the percolation threshold in the X direction is higher 
than the threshold in the Y direction because the effective 
length in the X direction is larger. For anisotropic systems, 
the thresholds have been defined as an occupancy probability 
that more than 50% of realizations are connected [2]. 

Table 5 Apparent threshold in the X and Y direction and minimum number of realizations as a result of sensitivity analysis for the aniso-
tropic models.

Effective length, Leff,X Aspect ratio, ω Minimum number of realizations Pc in the X direction Pc in the Y direction
1 10 2 2000 0.716 0.618
2 15 2 1600 0.703 0.631
3 20 2 1200 0.696 0.638
4 30 2 700 0.688 0.645
5 50 2 200 0.681 0.652
6 10 4 3000 0.821 0.512
7 15 4 2500 0.781 0.553
8 20 4 2000 0.758 0.575
9 30 4 1600 0.781 0.553
10 50 4 850 0.821 0.512

a a

bb

Figures 11 and 12 show the results of percolation probability 
and its associated standard deviation in the X and Y directions 
for anisotropic systems with aspect ratios ω=2 and 4 as listed 
in Table 5. As shown in these figures, the direction with the 
smallest effective length in an anisotropic system has the 
highest value of percolation probability. The percolation 
probability itself has a minimum standard deviation under 
such circumstances. Also, percolation probability determined 

from each system size behaves differently. Similarly, Figures 
13 to 16 show the results for backbone and dangling ends 
fractions and their associated standard deviations for 
anisotropic models with aspects values of ω=2 and 4.  
These results also clearly indicate the dependency of the 
percolation property on the system size and the separation 
of the percolation property curves obtained for the x and y 
directions compared to the isotropic case.
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b

a

Fig. 11 (a) Percolation probability and (b) its associated standard 
deviation of anisotropic models with ω=2  for system sizes listed 
in Table 5.

Fig. 12 (a) Percolation probability and (b) its associated standard 
deviation of anisotropic models with ω=4  for system sizes listed 
in Table 5.

b

a

Fig. 13 (a) Backbone fraction and (b) its associated standard de-
viation of anisotropic models with ω=2  for system sizes listed in 
Table 5.

Fig. 14 (a) Backbone fraction and (b) its associated standard 
deviation of anisotropic models with ω=4  for system sizes listed 
in Table 5.

a

b

a

b
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Fig. 15 (a) Dangling ends fraction and (b) its associated standard 
deviation of anisotropic models with ω=2 for system sizes listed in 
Table 5.

a

b

Fig. 16 (a) Dangling ends fraction and (b) its associated standard 
deviation of anisotropic models with ω=4 for system sizes listed in 
Table 5.

Fig. 17 Finite-size scaling for anisotropic systems of different ef-
fective length sizes is listed in Table 5 with ω=2, (a) percolation 
probability and (b) its associated standard deviation.

b

a

b

a

Fig. 18 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=4, (a) percolation 
probability and (b) its associated standard deviation. The percolation 
threshold of the infinite system is used to obtain scaling curves.

b

a
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Figures 17 and 18 show the results of finite-size scaling for the 
percolation probability; moreover, P of anisotropic systems 
(ω=2 and ω=4) is obtained by using the infinite percolation 
threshold. As emphasized earlier, using infinite percolation 
threshold in scaling Equations 5 to 8, for example, for the 
average percolation probability (in the x and y directions), 
cannot collapse the percolation probability results. However, 
suppose the apparent threshold introduced in Equation 
13 is used instead of the infinite percolation threshold, as 
suggested by King and Masihi in 2018 [4]. In that case, the 
percolation probability curves of the x and y directions will 
collapse on top of each other. Figures 19 and 20 show these 
data collapse results. The comparison of the quality of data 

collapse in Figures 19 and 20 show that the ability of the 
proposed approach to get data collapse become weak as the 
anisotropy of the system become stronger. 
Furthermore, the scaling curves for the results of the 
backbones and dangling ends fractions and their associated 
standard deviations using the proposed apparent threshold 
in Equation 13 are shown in Figures 21 to 24. Again, these 
results show the potential of the proposed approach to rescale 
the percolation properties obtained in each direction and 
collapse them on each other and the results of the isotropic 
case. Moreover, comparison of the results in Figures 21 and 
22 or Figures 23 and 24 indicate that the quality of collapse 
data depends on the level of anisotropy and get a weak data 
collapse as the anisotropy of the system becomes stronger. 

Fig. 19 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=2, (a) percolation 
probability and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

a

b

Fig. 20 Finite-size scaling for anisotropic systems of different ef-
fective length sizes is listed in Table 5 with ω=4, (a) percolation 
probability and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

a

b
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Fig. 21 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=2, (a) Backbone 
fraction and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

Fig. 22 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=4, (a) Backbone 
fraction and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

Fig. 23 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=2, (a) dangling 
ends fraction and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

Fig. 24 Finite-size scaling for anisotropic systems of different 
effective length sizes is listed in Table 5 with ω=4, (a) dangling 
ends fraction and (b) its associated standard deviation. An apparent 
percolation threshold is used to obtain scaling curves.

bb

aa
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Implementations to Field Data
It is notified that predicting the behavior of the backbones and 
dangling ends fractions’ curves plays a vital role in analysis 
of flow carrying part of porous media in many applications 
such as water or chemical flooding in oil reservoirs and water 
injection on geothermal reservoirs. To apply this approach 
to real reservoirs, the limitations of this approach must be 
considered. First, the reservoir model must be a binary type 
consisting non reservoir (non permeable) and reservoir 
(permeable) rock types. Second, the connectivity between 
these reservoir and non-reservoir rock types is the main one 
that controls the flow behavior in the medium. Other factors 
such as fluid properties are not critical.
To implement the percolation approach, first, it is needed to 
transform the reservoir model to become percolation type 
reservoir (i.e. binary medium). This can be done by setting 
a threshold value on, for example, reservoir permeability 
probability distribution. Below this threshold, all reservoir 
gridblocks are considered non-reservoir and above-
considered reservoir parts with a fixed permeability for 
all grid blocks. Afterwards, a conventional flow simulator 
with appropriate input data and constraints can be run for a 
well-pair considered in such a reservoir. This will give the 
amount of connected oil between two wells and the amount 
of oil non connected between the wells, which can then be 
compared with the predictions provided by each of the type 
curves (Figures 22-25). Applying this approach to some real 
anisotropic reservoirs and performing sensitivity analysis to 
answer the reasonable value for permeability threshold or 
the correct permeability for grid blocks considered reservoir 
parts is the objective of the future work.
In addition, to estimate the sweep efficiency in oil reservoirs, 
the results of this study enable us to estimate the volume 
of water that can be in touch in geothermal reservoirs to 
transfer heat from the reservoir to the injected water, or to 
determinethe fluid flow paths in the flooding process in the 
reservoirs which helps process optimization.    

Conclusions
The percolation sub-networks of overlapping sand bodies 
have been analyzed in this research work. In reservoir 
engineering applications, these are the amount of oil non-
connected to a pair injection and production wells and 
the fraction of connected oil recoverable.  In particular, 
isotropic and anisotropic percolation type reservoir models 
in two dimensions were built by considering permeable sand 
bodies randomly distributed in non-permeable backgrounds 
with different effective lengths. Then, the behavior of the 
backbone and dangling end fractions of anisotropic sand 
bodies representing the recoverable oil connected between 
two wells and remaining unswept oil and their associated 
uncertainties were investigated. Provided a considerable 
simulation studies on the generated models, we first apply 
scaling equations from percolation theory to estimate the 
model parameters such as percolation threshold and the 
critical exponents for power-law scaling equations for 
isotropic cases.  It results in a range for the critical exponents 
for the backbone and dangling end fractions that are 0.3, 0.45 
and -0.45, -0.20, respectively, which were consistent with 
previous publications on the critical exponent of backbone 

and provided a new range for the critical exponent of 
dangling ends.  Then, the appropriate forms of the scaling 
curves in the case of anisotropic models were investigated. 
The results showed that the percolation properties in the x 
and y directions get displaced from the isotropic case for 
the anisotropic models. However, considering the apparent 
threshold can rescale the percolation properties curves of 
different directions and put them on the known isotropic 
percolation properties’ curve. A suitable flow criterion that 
gives the minimum flow to pass each grid cell was used 
through a sensitivity analysis to distinguish the backbone 
and dangling ends. The results show that this threshold for 
the flow through each grid to characterize the backbone 
fraction depends on the effective length of the system. Using 
the determined master curves for each percolation property, 
the backbone from dangling ends fractions can be estimated 
quickly by a simple algebraic manipulation. This method 
can be used in the decision-making process, especially in the 
early development stage of the reservoir when data are very 
limited, in projects like water flooding or selecting proper 
positions to drill new wells in anisotropic reservoirs.
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