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Abstract

In this article, the effects of viscous dissipation and inertial force on the velocity and temperature
distributions of the mixed convection laminar flow in a vertical channel partly filled with a satu-
rated porous medium have been studied. In thisregard, the Brinkman—Forchheimer extended Darcy
model was adopted for the fluid flow in the porous region. In addition, three different viscous dis-
sipation model s with isoflux-isothermal boundary conditions were applied. To determine the vel oc-
ity and temperature distributions for both the regions, the coupled non-linear governing equations
were solved using two parameter perturbation and numerical methods. Moreover, the results of
the numerical method were validated against those predicted by the perturbation method for small
values of the dimensionless perturbation parameters. Furthermore, the results obtained for both
regions were compared in terms of Grashof, Reynolds, Forchheimer, and Brinkman numbers. The
predicted results clearly indicate that the type of viscous dissipation model has a significant effect
on the temperature and velocity distributions.
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INTRODUCTION

Convective heat transfer in closed conduits partially
filled with a porous medium is of essential importance
to a variety of engineering applications including solar
collectors, micro scale channels for cooling electronic
components, nuclear reactors, chemical catalytic reactors,
thermal insulation, and heat pipes. In the past decade, this
importance has attracted substantial analytical studies.
Fluid flow and convective heat transfer in a system
simultaneously containing afluid reservoir and a porous
medium saturated with a fluid is of great mathematical
and physical interest. More specifically, the existence of
afluid layer adjacent to alayer of fluid saturated porous
medium is a common occurrence in both geophysical
and engineering environment [1].

Viscous dissipation can cause an appreciable rise in the
fluid temperature due to the conversion of kinetic energy
of the fluid to the thermal energy and is considered as a
source term in the fluid flow. This effect is of particular
significance in high speed fluid flows, flows of highly
viscous fluids [2], flows through conventionally sized
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channels with large length to width ratio, and flows in
microchannels [3] Although the same situation prevails
in porous media [4], most existing analytical studies of
forced and mixed convection in porous media neglect
the effect of viscous dissipation [5-12].

For fully developed forced convection in porous
media, Nield et al [13] investigated the effects of viscous
dissipationinaparallel plate channel filled with aporous
medium for bothisoflux and isothermal walls. Thevalues
of Nusselt number for different cases were extensively
presented as a function of Darcy and Brinkman numbers.
Ranjbar-Kani and Hooman [14] and Hooman and
Gurgenci [15] numerically studied the forced convection
with viscous dissipation in a saturated porous medium.
Analytical expressions for the asymptotic temperature
profile and the asymptotic Nusselt number valuesfor the
isothermal boundary conditions were also presented for
verifying the numerical results in which the convective
term was neglected in the thermal energy equation for
fully developed fluid flow.

As mentioned earlier, there are numerous analytical


mailto:Amolaeid@sharif.edu

Vol. 1, No. 2

studies reported in the literature on the forced convection
in porous media, but few studies deal with the effect
of viscous dissipation on the transverse temperature
distribution within a porous medium. However, the
temperature variation within a porous medium is of
primary importance for understanding the mechanism of
heat transfer processes and predicting the heat-transfer
rate [16].

In the literature on fluid flow in media, which are
totally filled with porous materials, it has been reported
that the local macroscopic inertial term is usually small
compared to the microscopic Darcy drag term and hence
it can be neglected. In most practical situations, the
velocity responds to an imposed pressure drop within a
second or less. The local inertial term may be important
if an oscillatory pressure gradient is imposed or if the
porous domain is of large void fraction. However,
it is obvious that the local inertial term may retain its
importance in applications involving very thin porous
substrates or at large Darcy number. Therefore, the study
of convective heat transfer in such coarse porous media
requires generalized momentum equations [17,18]. For
example, Abu-Hijleh and Al-Nimr [18] investigated
the importance of the local inertial term in the forced
convection and fluid flow problemsin channels partially
filled with a porous medium. Vafai and Tien [19]
studied boundary and inertial effects of porous media,
which are not normally taken into account in the well
known Darcy’s law. Umavathi et al [17-20] conducted a
numerical study on the combined convection in a vertical
channel filled with a porous medium by considering the
effect of inertial force.

The major objective of the present study was to study
the details of transverse temperature variations in a
parallel plate channel partly filled with asaturated porous
medium. In this regard, the governing equations subject
to isoflux/isothermal boundary conditions were solved
using approximate analytical and numerical methods to
obtain the distributions of velocity and temperature in
terms of Grashof, Forchheimer and Brinkman numbers.

STATEMENT OF THE MODEL

Let us consider a Newtonian fluid, which steadily flows
in a paralel plate vertical channel partly filled with a
saturated porous medium in which combined forced
and natural convection takes place. As shown in Figure
1, the x axis was chosen as the direction of fluid flow
against the gravitational field whereas the y axis was
transverse to the walls. Moreover, suppose that both
the fluids flowing in the porous and viscous regions are
incompressible and the porous medium is isotropic and
homogeneous.

At the walls of the channel, a thermal boundary
condition either of the first kind (i.e., temperature
distribution) or of the second kind (i.e., constant wall heat
flux) could be prescribed. Obviously, at both walls of the
channel, all the combinations of the above conditions
and even their self combinations can be allowed [21].
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Theisoflux and the constant wall temperature conditions
at the left and right walls of the channel correspond to
the hybrid combination of the second and first kind of
thermal boundary conditions, respectively. Therefore,
the right wall of the channel was kept at temperature T
whereas the left wall was exposed to a constant wall heat
fluxq,,

Porous region  Viscous region
I I
X
9 T,
¥
y=-h y=h;

Figure 1.: Configuration of the problem and its boundary conditions

Thethermo physical properties of the fluid and effective
properties of the porous medium were assumed to
be constant, except for the fluid density applied in
the buoyancy term in the momentum equations [22].
Moreover, the Oberbeck-Boussinesq approximation was
used throughout the present work and the fluid within
the porous medium and the solid matrix were in the local
thermal equilibrium.

According to Figure 1, the region —h, <y < 0 was
filled with a saturated porous medium with the density
p,, Viscosity p,, thermal conductivity k1, and the thermal
expansion coefficient 3, whereastheregion0<y <h, is
aviscous fluid with the density p,, viscosity p,, thermal
conductivity k,, and the thermal expansion coefficient
Bz'

Governing Equations

In this section, the momentum and energy balance
equations are written in dimensionless forms. Then, the
solutions to these equations for three different cases are
presented. Consider a steady state, laminar, and fully
developed fluid flow in the paralel plate channel in
which the only nonzero component of the velocity field
is its longitudinal component, u, (i.e., x component of
velacity field). Under these conditions, the continuity
equations for both the regions become:

ou, 1)
ox

Moreover, equations of motion for both the regions can

=0 i=12
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be expressed as [23]:
1- Porous region:

x direction:

1 &P d*u, v 5
gﬁl(ﬂ—Tu)—;‘g_;J“”:rf dy; —Ei“]—ﬁlﬁ =0 @)
y direction: ﬁ =( 3)
2- Viscous region: ay
x direction: gf, (T, - qu“o)fL i +u, ¢ Li? =0 4)

py Ox Ty
oP, 0
y direction: g = (5)

where gB (T -T,)), veff (d® u/dy ), and (V/K) u, are
the buoyancy term, viscous term, and the Darcy term,
respectively, whereas accounts for the inertial force
and finally P = p + pgx is the hydrodynamic pressure.
Considering equations 3 and 5, equations 2 and 4 can be
rewritten as:

1 dP du. v G5
gb(T, _T—E])“p_r—dx[ +U,45 dyjl _E'ul ——,_; u; =0 (6)
1 dP, d’u,
R ©

where T is a reference temperature. Moreover, if one

assumes that there is a constant A such that:

LT
E—A,l—land2 (8)

then taking the derivatives of equations 6 and 7 with
respect to x and using eq 8 gives:

ﬂ:();i:lar'nc‘lz 9)

dx
Equation 9 clearly shows that the temperature of fluids
is a function of y alone as well.
Considering equation 9, the thermal energy equation
for the region | taking into account the effect of viscous
dissipation is given by:

ar

k—>+®=0
dy’
) d du,\’ (10)
Q= ﬂu;‘ O Mt i S 1 at
K Toody Ty

where @ is the viscous heating due to viscous dissipation
in the porous medium. In the literature, three models
proposed for viscous dissipation in porous media are as
follows: [13]

(1) For model 1 (i.e., Darcy model), ¢,=0 and c,=0

(2) For model 2 (i.e., power of drag force model), ¢c,=1
and ¢,=0

(3) For model 3 (i.e., clear fluid compatible model), ¢, =0
and c,=1.

The conservation equations for the porous region are
based on the non-Darcian model taking into account
the Forchheimer-Brinkman extension in the momentum
equation as well as the viscous dissipation terms in the
thermal energy equations. Note that for high permeability
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porous media, the Brinkman extension must be included
[24]. However, for moderate values of the velocity and
viscosity of thefluids, the dissi pation termsareimportant
and therefore have to be included in the thermal energy
equations.

When the flow in an isotropic porous medium
satisfies Darcy’s law, the appropriate heat source term
that models viscous dissipation in the thermal energy
equation is given by the Darcy model (i.e., Model 1).
Nield [25] stated that this form of ® can be obtained by
substituting ® = u.F, where F is the drag force on the
porous medium. Thus, if Darcy’s law is valid and the
permeability is isotropic, then F = (WK) u. While the
form of @ given by Model (1) is widely accepted for
the Darcy flow, the same cannot be said for flows where
boundary effects, as modeled by the Brinkman terms,
are significant. Nield's drag force formula yields the
form given by Model (2) while Al Hadhrami et al [26].
used an argument based on the work done by frictional
forcesto obtain Model (3) in one dimensional flow. Both
formulae yield the correct form of @ in the case of small
permeability porous media. However, when the porosity
increases to 1, only the formula of Al-Hadhrami et al
[26]. matches that for a clear fluid [27].

" q'z;-':2 . h[duz] .
2 e Ha & 0 (11)

where the second term accounts for the effect of
viscous heating.

Note that the momentum equations for the porous layer
(i.e., equations 2 and 3) are based on the non-Darcian
model considering the Brinkman and Forchheimer
terms. Beckermann et al [24] have experimentally
shown that in the natural convection in vertical channels
containing fluid and porous layers, the Brinkman term
is small compared to the Darcy term. However, they
considered the Brinkman term in all their simulations
to ensure continuity of velocities and stresses at the
interface of the fluid/porous medium. Both the Brinkman
and Forchheimer terms should be taken into account for
high permeability porous media, i.e., high Darcy number
[17].

Equations 6 and 7 can be transformed into the
following equations by using egs 10 and 11:

d4’-‘\ _| &P ghiw " 2Cep, [d“l ] +{p, ghiw ]uz
1 e L]
dy B F Hy VK dy By by K

_|ameh 2Cep |, du | m |dw
k qu,y\/f ld}’z Py K &’ (12)
d'u, _[ P28P; @ ’
&'k N (13)

Boundary Conditions

The two regions are coupled by equating the velocity
and the shear stress for the momentum equations while
the matching of the temperature and heat flux istaken for
the thermal energy equations. The governing equations
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have to be solved subject to the following boundary
conditions:

at y=-h: u, =0, 7k]a]=q“,
at y=h,: u,=0, T,=T,
at y=0: w,=u,, T, =T,
du, du T, aT.
at y=0: = 2 —k—t=—k,—>
Yy = & Hy & 2y ™ (14)

To transform these equations into dimensionless forms,
we introduced the following dimensionless parameters:

v =28, y=0lh g2
Al Ah h,
y,=2 g =U"T) 62:—[T2'TGJ
'oh ' AT AT
3 21.4
Gr:M,REZM, Br:_A hy ,
vy uy Wk AT
K Hoy 1
Da=—, M=, o= 15
‘ hy : Hy JDaM (15)

Using these dimensionless parameters, equations 12 and
13 become:

d'v, ,du, 2F|(du,Y . d'U,
-0 . +U — |+
dr* vt M u’Y ar’

GR.Brl o U +—[db ] -cU, i bl ] (16)
M\ ay dy
4
4Y: _ mnbh*GR Br [‘ﬂ’ ] (17)
dy* dY

subject to the following dimensionless boundary
conditions:

dU,_dU, 2, dU, _GR

i Py il | Ll gl A0 OR
A R A
at¥=1: U,=0 , TYi-1_nbR, GR
. ar’ '
A ¥=0: U=mhl, a0, o0~ L[ L | 2% s np-i
a M\ Mnb | ar?

dU,_.dU, &V, ,dU 2F, dU,_ 1
at¥=0: Tiopf2 Lo 2T st O L1
dY o dY T4y Ay M 'dY nbkhM dY

(18)

SOLUTION
In what follows, we present analytical approximate

solutions for the governing equations.

Case I. Negligible Forchheimer and Brinkman Terms
(i.e., Br=0and F=0)

In the case where both the inertial force and viscous
heating are negligible, the velocity distribution of the
fluid in both the regions can be analytically determined
by integrating eqs 16 and 17 subject to the dimensionless
boundary conditions given by eq 18 with both F and Br
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set equal to 0. The velocity distributions for this case
become:

U, =a,+a,Y +a,cosh(o V) +a, sinh(c }) (19)

U, =b+bY +bY*+bY’ (20)
where parameters a and b, (i = 1,..., 4) are the constants of
integration. Moreover, using the dimensionless parameters
given by eq 15, the thermal energy equations for both the
regions become:

M[l U, JEU]J ﬂ[iﬂra,ﬂraz}’]

'""GR\ M aY? GR
(21)
1 i B
8, = 1- = 1-2b,—-6b,Y
* anR[ d}f‘*] GR n b{ J)
(22)
The integration constants for m=n=b= =h=Rqt=1, , and
GR=10 are as follows:
a, =475, a,=-235, a,=052, a,=233 (23)

b =526, b,=257, b=-95 b, =167

Case I1. Negligible Brinkman Term only (i.e.,, Br=0
and Fi 0)

In this case, only the effect of viscous heating is
neglected and the effect of inertial force is taken into
account. Therefore, equations 16 and 17 become:

U, ,d', _EMdU,]:U dzu,]

ar* 0 arr um|\ar ) TV ar (24)
a'U,

==0 25
dY'ﬂ ( )

Solutions to eqgs 24 and 25 subject to the corresponding
boundary conditions (i.e., eq 18) can be obtained by a
regular perturbation method. The approximate solution
to these equations for small values of F can be expressed
as:
UX)=Uy(V)+y U, (V) +7°U,(¥) +.. “Zr U, (Y) (26)
n=0
The dimensionless perturbation parameter can be
defined by:
_2F
" (27)
Upon substitution of eq 26 for n=0 and 1 into eqs
24, 25, and 18, the momentum equations for both the
regions become:
Porous region:

4 2
dU, __.dUy _, (28)
ar dy?
dv, ,d, Kdum}z ) dEU,{,} (29)
e e S +U—;
dy dr’ dy dar’
Viscous region:
d“U30 B
dvt (30)
4 Ua _g (31)

dy?
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subject to the following boundary conditions:
Zeroth-order equations:

3
at ¥=-1: U,=0 , dly U."' —o'z—dU"‘ B8
dy? dy M
atY=1: U,,=0 , ddgf‘):lfanq,GR
#¥=0: Uy=miU, , 100 oy (L |9Yn
dy? Mnb) dy*
at ¥ =0: dUm:hdUzo d}Um 7O.ZdU|n: 1 dlen
dy a7 ar dY  nbxkhM ay’
(32)
First-order equations:
3rr
at ¥=—1: U, =0 , dLJ’—asz“—U,“dU“’:O
dy? dy dy
2
at Y=1: U, =0 |, din _q
dy?
atY=0: U,=mh’U, ,
Irr 2rr
- Lo” _GIUH _lufu = I L ng\
dy? 2 Mnb ) dY?
at ¥ =0: —db',' =h—d03’
dY dY
d-"U“_U2 dUy _; dU, _ 1 d%{21
dy’? dy " dY nbxhM 4y’ (33)

Solving the zeroth and first order equations for the
porous and viscous regions yields:

U,, =M, + M,Y + M, cosh(c Y)+ M, sinh(c ¥)
Uy =N +NY+NY + N Y? (34)
U,=PB+PY+PY*+P,cosh(c¥)+
+PBY?*cosh(c Y)+ P,Y*sinh(c V) +
+BY? cosh(c Y)+ RY? sinh(c ¥) +
B, cosh(2o ¥Y) + R, sinh(25 Y)

Uy =0 "'sz“"Qs}ﬁ"'Q‘ayj (35)
where M, N, P, and Q, are the constants of integration.
Moreover, the thermal energy equations for both the

regions become:
M [ 1 d (U, +y Uy .
2

' T Grl M dy

i F L
o Uy +yU)+—U,+rU, )_}
M (36)

G

_ 1 1_d2(UJn+?’U2|)
nbGR dy?

@7)
Case I11: Non-Negligible Forchheimer and Brinkman
Terms (i.e., Bri 0OandF 1 0)

In this general case, the effects of viscous heating
and the inertial force are both taken into account. The
approximate solutions to equations 16 and 17 can be
obtained by a two parameter perturbation method. The

dimensionless perturbation parameters can be defined as:

e=GRBr, y=2L
M (38)

Suppose that the values of these perturbation parameters
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are small (i.e, |y] << 1 and [g] << 1). The approximate

solutions to equations 16 and 17 for specified values of

F and Br can be expressed as:

UY)=U,(Y)+eU, (V) + V(N +EU,N+7 V(1) +...

=U,(V)+% [eU (V) +7V (¥
o(¥) Z[ LN +Y'V,(1) ] (39)

By substituting eq 39 into eqs 16, 17, and 18 for n =

0 and 1, the momentum equations for both the regions

become:

Porous region:

M _ O,.? & = 0
g ar? (40)
. ; 7 277
: (41)
AV _ 24V _ {[db‘ﬂ T +U d?U”]}
. 5 —— 10 2
Y dY dY dY (42)
Viscous region:
d'u
o2
= (43)
4 Y
Ua‘ mﬂmcbh‘(&f"]
}, i (a0
dl'lj'll i
4
= (45)

Moreover, the corresponding boundary and interface
conditions are:
Zeroth order equations:

d'Vy __»dU, _GR

atY=-1: U,=0 1
dY ar M

dUn _1_ubR GR

7' qt

atY=1: Uy=0 ,

at Y =0: U,=mh>U,,

2 2
d U, -c’Uy, =( ! ]]id Yz +nb—l}

dy? Mnb dy?
aty=0: Ve _,dUn
dY dY
AUy __2dUy, 1 d'Uy
dy’ dY nbxhM dy? (46)

First order equations:
at¥=-1: U, =0 , ¥, =0

at ¥=1: Uy=0 , V,=0

aY=0: U,=mh’Uy ., V,=mhV,

irr 2
at ¥ =-1: 1 03“ —Gl—dD” =0 ,
dy dY
dlp’lli(}Zdl/llib' dU|o=0
dy? dy oay
d’U, dav.
at¥=1:. —2&=0 , 2AL=0
- dY
aty=0: Wu_pdUn A _,dVy

dy dY
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d*U R d*U,
at ¥ =0: Uz“ -c'U, = . {i‘] ;
dy Mnb ) dY

d‘V;] _G:VII _lUlzo = . _d-VaZ]
dy 2 Mnb ) dY’
at ¥=0: L Uu 24U _ 1 d’U,,
dy? dY nbxhM dY*°
d3l’;| P dVl] —U dUI() — 1 dsp'zl
ay’ ay gy  nbxhM ay:  (47)

The solutions to the zeroth and first order equations for
the porous and viscous regions are:

U,o,=C +CY+C,cosh(c Y)+C,sinh(c Y)

Uy,=D +D,Y+DY*+D,Y’
20 1 2 3 4 (48)

U,=E +EY+(E,+E,c,+E;c,)Y +

E)Y’ +E,Y' +(E, + Eyc, + E,c,)cosh(c Y)
+(E, +E\,c, + E\;c,)sinh(c 1) +

(E,, + E s¢, + E,;¢,)Y cosh(a Y)

+(E,; + ¢, + E g, )Y sinh(o ¥) +(Ey, +Eye, )Y cosh(o ¥)
+(Ey + By )Y sinh(c Y) + (E,, + Eyc, + Eyc,)sinh(c* Y)
+(Ey +Epge, + Eyye, )cosh(a* V) + Eye™ +Eye™

U,=F+FEY+FY +FY’+

FY'+FY +EY* +FY +FY*

Vi, =G, +G,Y+G,Y* +G,cosh(c ¥)+

G, sinh(c Y)+ G,Y cosh(cY)
+G,Ysinh(c ¥)+G,Y’ cosh(c V) +

G,Y? sinh(c Y) + G,, cosh(2c Y)
+ G, sinh(20 )

(49)

V, =H,+H,Y + H,Y> + H,Y’ (50)

where C, D, E, F,, G, and H, are the constants of
integration.

Furthermore, using the dimensionless parameters
given by eq 15, the thermal energy equations for the
porous and viscous regions are:

Porous region:
0, M[ 1 _dz(Um+gU“+}fV”)+

" GR\ M dy?

2 F o 2
G‘[U]“+8U” +:VVH)+‘H(UIU+8UH Y V]l)_]

(51)
Viscous region:
6, - [1_ d*(Us, +8 Uy +y VH)J
2
nbGR dY (52)

Finally, by obtaining the temperature profilesfor both
the regions, convective heat transfer coefficient can be
determined. The Nusselt number values for the left and
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right walls can be evaluated by:

Ny — G +hy) _ (1+h) (53)
TR =T 6,(-D)
i - L8 ) 1Y 8.)
AT hAdyY ), 54

In addition to the approximate analytical solution, the
velocity and temperature distributions in the presence
of inertial force and viscous dissipation were obtained
using a numerical procedure and the predicted results
were compared with the results predicted by the
present perturbation method. In this regard, coupled
governing equations subject to the appropriate boundary
conditions were solved using finite difference method.
The derivatives in the equations were replaced with
corresponding central difference schemes. The following
convergence criteria for solving the obtained algebraic
equations were used:

n+l n n+l n
maxiu; . —u; i max(T.’" -1 —
< y
maxju,""' max|T,""
W iIj
(59)

where n is the nth iteration.

RESULTS AND DISCUSSION

In the present work, the perturbation solution was
compared against the exact solution of the governing
equations in the absence of inertial effects in the
equations of motion and the viscous dissipation term in
the thermal energy equation as shown in Figure 2. It can
be observed that the perturbation and the exact solutions
are in good agreement.

Figure 3a shows the variations of dimensionless
velocity for both the regions with the perturbation
parameter,e, and using different types of viscous
dissipation models (i.e., Models 1, 2, and 3) for y =
0.01, GR=10, and m=n=b=k=h=R_=1. As observed
from this figure, the dimensionless velocities for both
the regions increase with increasing parameter €. This
behavior can be explained by greater thermal energy
generated by the viscous dissipation, which enhances
the fluid temperature and consequently resultsin greater
buoyancy force. Therefore, an increase in the buoyancy
force increases the velocity in the upward direction.

According tothedefinition of parameter € (i.e., GRXBr),

at a constant value of GR (i.e., 10), increasing € increases
the Brinkman number. The Brinkman number represents
the effect of viscous dissipation such that large values of
Br show that more heat dissipates in the medium. Heat
dissipation can act as a heat source in the medium and
increases the fluid temperature.
In addition, it is interesting to note that no flow reversal
occurs at the channel walls compared with constant wall
temperature conditions in which, there is flow reversal
at the cold wall for the same parameters (i.e., GR = 10
and y=0.01) [28].
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Exact
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Figure 2. Dimensionless profiles for case (1) Br=F=0. (&) velocity profile and (b) temperazure profile
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(a)
Figure 3. Dimensionless profiles for different values of €. () velocity profile and (b) temperature profile

In fact, viscous dissipation (with increasing €) increases
the buoyancy force and therefore it tends to increase the
flow field inthe channel. Furthermore, if theinertia force
is neglected, the predicted results become similar to those
reported by Kumar et al [ 29] Besides, thisfigureshowsthat
the velocity distribution of the fluid varies with various
types of viscous dissipation models. Itcan be seenthatthe
difference between the velocity profiles using different
viscous dissipation models increases as € increases.

Figure 3b demonstrates the variations of dimensionless
temperature of both the regions with the parameter €
for y=10.01, GR = 10, and Da = 0.25 and for different
types of viscous dissipation models. This figure clearly
shows that the dimensionless temperatures increase with
increasing €. However, the variation of the dimensionless
temperature due to the different viscous dissipation
models is not significant for small values of €.

Figures 4a and b demonstrate the variations of
dimensionless velocity and temperature for both the
porousandviscousregionswiththe perturbationparameter
y, for € = 0.1, Da = 0.25, and GR = 10, respectively.
These figures clearly show that dimensionless velocity
(V) and the dimensionless temperature (8) decrease with
increasing y (i.e., F-to-M ratio). The presence of porous
mediumincreasesflow resistance. Inaddition, theinertia
effects (with increasing y) enhance this resistance, which
further reduces the flow velocity in the channel.

— — Model 1, y=01
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Y, o Model 3, y=0.1
4 # + Mode 1, y=08
! ki * oo s NModel 2, =08
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(bI) 5] 0.8

o

GR=10,e=01,M=1,Da=025

Figure 4. Dimensionless profiles for different values of y. (a)
Velocity profile and (b) temperature profile
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Figures 5a and b show the velocity and temperature
distributions for both the regions as a function of mixed
convection parameter (i.e., GR) forBr=0.02and y=0.01.
As it may be noticed, GR is a parameter for comparing
the intensities of natural and forced convection effects.
In fact, for GR >1, flow is dominated by the natural
convection whereas for GR <1, forced convection can
be dominant. Thus, at GR = 1, the effects of natural and
forced convection achieve equal importance and flow is
under mixed convection conditions. The trends of the
dimensionless velocity and temperature profiles with
increasing GR can be explained by an increase in the
buoyancy force, which enhances the flow velocity and
fluid temperature. The effect of Brinkman number on
the Nusselt number values of the channel walls is shown
in Figure 6 for different viscous dissipation models. As
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observed from this figure, the effect of Br on the Nusselt
number values is similar to that on the temperature
distribution.

The Nusselt number values at Y = 1 (i.e.,, Nu,)
increase with increasing the Brinkman number. On the
other hand, Nu, is a decreasing function of the Br. The
positive sign of Nusselt number values can be explained
by the direction of the heat flux at the left and right walls
of the channel. As Brinkman number increases, viscous
dissipation in the fluid channel increases and therefore
the fluid temperature increases. Thus, the temperature
difference between the fluid and the left wall of the
channel decreases and Nu, reduces. Moreover, by
increasing the fluid temperature as the result of viscous
heating, the fluid and the right wall temperature gradient
increases and Nu, increases, consequently.

o
'.On
S
\ e GR=10, Model 1
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Figure 5. Effects of mixed convection parameter on (@) velocity profile and (b) temperature profile
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The effect of Forchheimer number in the form of different
values of parameter F on the Nusselt number values
of the channel walls is shown in Figure 7. This figure
shows that the Nusselt number value at the left wall (i.e.,
Nu,) increases with increasing the Forchheimer number.
On the other hand, the Nusselt number values at the right
wall (i.e., Nu,) are different and decrease as F increases.
This behavior of the heat transfer coefficients (i.e., Nu)
can be explained by the fluid temperature distribution.
Thevariationsof theconvectiveheat transfer coefficient
at the channel walls with mixed convection parameter
(i.e., GR) are summarized in Table 1. As observed from

this table, the effect of GR values on the Nusselt number
values is similar to that on the temperature distribution.

The comparison of the results predicted for
dimensionless velocity and temperature distributions
by the perturbation and numerical methods is shown
in Figure 8. As observed from this figure, there is
fair agreement between the predicted results of the
perturbation and the numerical methods. It is worth
mentioning that with increasing the perturbation
parameter, the difference between the predictions of
the numerical and approximate analytical methods
increases.
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Figure 7. Effects of Forchheimer number on (a) Nul and (b) Nu2
Table 1. Values of Nu, and Nu, for different values of GR
Br=0.02,y=0.01
Model 1 Model 2 Model 3
GR Nu, Nu, Nu Nu, Nu, Nu,
0.666 2 0.666 2 0.666 2
0.570859 3.177477 0.523647 3.620565 0.493911 3.881658
10 0.263796 12.61807 0.167147 19.48521 0.128636 24.14251
15 0.073209 57.69149 0.034801 106.8312 0.023925 142.4125
20 0.020247 219.5822 0.008492 445.9768 0.005589 615.7845
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CONCLUSION

Approximate analytical and numerical solutions were
obtained for the problem of mixed convection in channels
partialy filled with a porous medium taking into account
the effect of viscous dissipation and the inertial force. The
problem of combined forced and natural convection with
hybrid thermal boundary conditions was solved by two
parameter perturbation and numerical methods. Three
different viscous dissipation models were considered
to account for the viscous heating. The velocity and
temperature distributions for both the porous and
viscous regions and the Nusselt number values were also
obtained in terms of Grashof, Reynolds, Forchheimer,
Brinkman, and Darcy numbers. Moreover, it was found
that the influence of type of viscous dissipation model
on the velocity and temperature distributions is profound
and increasing the values of porous parameter and
Forchheimer drag term reduces the flow in the channel.
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NOMENCLATURE

A= negative of applied pressure gradient (dp/dx)
b = thermal expansion coefficient ratio (3,/B,)
Br = Brinkman number

C= specific heat at constant pressure

C. =inertia coefficient

D, = Darcy number based on h,

F = Forchheimer number

g = gravitational acceleration

Gr = Grashof number

GR = buoyancy force to pressure gradient ratio
h = width ratio (h,/h,)

h, = porous region width

h, = viscous region width

K = permeability of porous media
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4 Numencal, e=0.1
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Figure 8. Comparison of numerical and analytical results (a) velocity profile and (b) temperature profile

k= thermal conductivity of fluid
m = viscosity ratio (i, / 1,)

M= lJel"f /“1
n = density ratio (p,/ p,)
p = pressure

q, = wall heat flux

Re= Reynolds number

T = temperature

T,= prescribed boundary temperature
u = velocity

Greek Symbols

a = thermal diffusivity

[3 = thermal expansion coefficient
€= dimensionless parameter

y= dimensionless parameter

K = thermal conductivity ratio (k ,/k ,)
M = viscosity

u,, = effective viscosity

v = kinematic viscosity

6= dimensionless temperature

p= density

O = porous parameter

Subscripts
1 & 2 = Reference quantities for region | and II,
respectively
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